These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21263574)

  • 21. Novel method for stereo imaging in light microscopy at high magnifications.
    Greenberg G; Boyde A
    Neuroimage; 1993 Sep; 1(2):121-8. PubMed ID: 9343563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Imaging modes for scanning confocal electron microscopy in a double aberration-corrected transmission electron microscope.
    Nellist PD; Cosgriff EC; Behan G; Kirkland AI
    Microsc Microanal; 2008 Feb; 14(1):82-8. PubMed ID: 18096098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Miniature objective lens with variable focus for confocal endomicroscopy.
    Kim M; Kang D; Wu T; Tabatabaei N; Carruth RW; Martinez RV; Whitesides GM; Nakajima Y; Tearney GJ
    Biomed Opt Express; 2014 Dec; 5(12):4350-61. PubMed ID: 25574443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid, simple technique to extend depth of field in microneurosurgical images: technical note.
    Sabuncuoğlu H; Jittapiromsak P; Spetzler RF; Preul MC
    Neurosurgery; 2009 Dec; 65(6 Suppl):E73-4; discussion E74. PubMed ID: 19935012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems.
    Wang E; Babbey CM; Dunn KW
    J Microsc; 2005 May; 218(Pt 2):148-59. PubMed ID: 15857376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and characterization of a digital image acquisition system for whole-specimen breast histopathology.
    Clarke GM; Peressotti C; Mawdsley GE; Yaffe MJ
    Phys Med Biol; 2006 Oct; 51(20):5089-103. PubMed ID: 17019027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resolution-enhanced integral imaging microscopy that uses lens array shifting.
    Lim YT; Park JH; Kwon KC; Kim N
    Opt Express; 2009 Oct; 17(21):19253-63. PubMed ID: 20372662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Point-spread function engineering to reduce the impact of spherical aberration on 3D computational fluorescence microscopy imaging.
    Yuan S; Preza C
    Opt Express; 2011 Nov; 19(23):23298-314. PubMed ID: 22109208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extended depth of field imaging for high speed cell analysis.
    Ortyn WE; Perry DJ; Venkatachalam V; Liang L; Hall BE; Frost K; Basiji DA
    Cytometry A; 2007 Apr; 71(4):215-31. PubMed ID: 17279571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Instrumental development attachable to high magnification microscopes for obtaining totally focalized images.
    Navas FJ; Kulawik M; Martín J
    Rev Sci Instrum; 2008 Nov; 79(11):113703. PubMed ID: 19045891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling, optimization, and validation of an extended-depth-of-field optical coherence tomography probe based on a mirror tunnel.
    Okoro C; Cunningham CR; Baillargeon AR; Wartak A; Tearney GJ
    Appl Opt; 2021 Mar; 60(8):2393-2399. PubMed ID: 33690340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complex wavelets for extended depth-of-field: a new method for the fusion of multichannel microscopy images.
    Forster B; Van De Ville D; Berent J; Sage D; Unser M
    Microsc Res Tech; 2004 Sep; 65(1-2):33-42. PubMed ID: 15570586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Super-resolution and reconstruction of sparse sub-wavelength images.
    Gazit S; Szameit A; Eldar YC; Segev M
    Opt Express; 2009 Dec; 17(26):23920-46. PubMed ID: 20052103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens.
    Wang YJ; Shen X; Lin YH; Javidi B
    Opt Lett; 2015 Aug; 40(15):3564-7. PubMed ID: 26258358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional imaging of single isolated cell nuclei using optical projection tomography.
    Fauver M; Seibel E; Rahn JR; Meyer M; Patten F; Neumann T; Nelson A
    Opt Express; 2005 May; 13(11):4210-23. PubMed ID: 19495335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple excitation nano-spot generation and confocal detection for far-field microscopy.
    Mondal PP
    Nanoscale; 2010 Mar; 2(3):381-4. PubMed ID: 20644819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methods for compensation of the light attenuation with depth of images captured by a confocal microscope.
    Capek M; Janácek J; Kubínová L
    Microsc Res Tech; 2006 Aug; 69(8):624-35. PubMed ID: 16741977
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuropathology in depth: the role of confocal microscopy.
    Murray JM
    J Neuropathol Exp Neurol; 1992 Sep; 51(5):475-87. PubMed ID: 1517770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study.
    Weinstein RS; Descour MR; Liang C; Barker G; Scott KM; Richter L; Krupinski EA; Bhattacharyya AK; Davis JR; Graham AR; Rennels M; Russum WC; Goodall JF; Zhou P; Olszak AG; Williams BH; Wyant JC; Bartels PH
    Hum Pathol; 2004 Nov; 35(11):1303-14. PubMed ID: 15668886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical volumetric projection with large NA objectives for fast high-resolution 3D imaging of neural signals.
    Meng Q; Xu T; Smith ZJ; Chu K
    Biomed Opt Express; 2020 Jul; 11(7):3769-3782. PubMed ID: 33014565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.