These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 21263578)

  • 1. Microscope-based label-free microfluidic cytometry.
    Su X; Kirkwood SE; Gupta M; Marquez-Curtis L; Qiu Y; Janowska-Wieczorek A; Rozmus W; Tsui YY
    Opt Express; 2011 Jan; 19(1):387-98. PubMed ID: 21263578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system.
    Zhuang G; Jensen TG; Kutter JP
    Electrophoresis; 2012 Jul; 33(12):1715-22. PubMed ID: 22740459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase imaging flow cytometry using a focus-stack collecting microscope.
    Gorthi SS; Schonbrun E
    Opt Lett; 2012 Feb; 37(4):707-9. PubMed ID: 22344155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2D light scattering static cytometry for label-free single cell analysis with submicron resolution.
    Xie L; Yang Y; Sun X; Qiao X; Liu Q; Song K; Kong B; Su X
    Cytometry A; 2015 Nov; 87(11):1029-37. PubMed ID: 26115102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells.
    Su X; Qiu Y; Marquez-Curtis L; Gupta M; Capjack CE; Rozmus W; Janowska-Wieczorek A; Tsui YY
    J Biomed Opt; 2011 Jun; 16(6):067003. PubMed ID: 21721824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput and high-resolution flow cytometry in molded microfluidic devices.
    Simonnet C; Groisman A
    Anal Chem; 2006 Aug; 78(16):5653-63. PubMed ID: 16906708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microflow Cytometer for optical analysis of phytoplankton.
    Hashemi N; Erickson JS; Golden JP; Jackson KM; Ligler FS
    Biosens Bioelectron; 2011 Jul; 26(11):4263-9. PubMed ID: 21601442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry.
    Holmes D; Pettigrew D; Reccius CH; Gwyer JD; van Berkel C; Holloway J; Davies DE; Morgan H
    Lab Chip; 2009 Oct; 9(20):2881-9. PubMed ID: 19789739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria.
    Bernabini C; Holmes D; Morgan H
    Lab Chip; 2011 Feb; 11(3):407-12. PubMed ID: 21060945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential of autofluorescence for the detection of single living cells for label-free cell sorting in microfluidic systems.
    Emmelkamp J; Wolbers F; Andersson H; Dacosta RS; Wilson BC; Vermes I; van den Berg A
    Electrophoresis; 2004 Nov; 25(21-22):3740-5. PubMed ID: 15565697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurements of light scattering in an integrated microfluidic waveguide cytometer.
    Su XT; Singh K; Capjack C; Petrácek J; Backhouse C; Rozmus W
    J Biomed Opt; 2008; 13(2):024024. PubMed ID: 18465987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of model mixtures of epsilon-globin positive fetal nucleated red blood cells and anucleate erythrocytes using a microfluidic device.
    Lee D; Sukumar P; Mahyuddin A; Choolani M; Xu G
    J Chromatogr A; 2010 Mar; 1217(11):1862-6. PubMed ID: 20144459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle immunoagglutination Rayleigh scatter assay to complement microparticle immunoagglutination Mie scatter assay in a microfluidic device.
    Heinze BC; Yoon JY
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):168-73. PubMed ID: 21411297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic purification and analysis of hematopoietic stem cells from bone marrow.
    Schirhagl R; Fuereder I; Hall EW; Medeiros BC; Zare RN
    Lab Chip; 2011 Sep; 11(18):3130-5. PubMed ID: 21799976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens.
    Song C; Luong TD; Kong TF; Nguyen NT; Asundi AK
    Opt Lett; 2011 Mar; 36(5):657-9. PubMed ID: 21368939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting.
    Yao B; Luo GA; Feng X; Wang W; Chen LX; Wang YM
    Lab Chip; 2004 Dec; 4(6):603-7. PubMed ID: 15570372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Further developments of a microscope-based flow cytometer: light scatter detection and excitation intensity compensation.
    Steen HB
    Cytometry; 1980 Jul; 1(1):26-31. PubMed ID: 7273962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining.
    Kummrow A; Theisen J; Frankowski M; Tuchscheerer A; Yildirim H; Brattke K; Schmidt M; Neukammer J
    Lab Chip; 2009 Apr; 9(7):972-81. PubMed ID: 19294310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.