These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2126407)

  • 1. Killing of Drosophila larvae by the fields of an electrohydraulic lithotripter.
    Carstensen EL; Campbell DS; Hoffman D; Child SZ; Aymé-Bellegarda EJ
    Ultrasound Med Biol; 1990; 16(7):687-98. PubMed ID: 2126407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioeffects of positive and negative acoustic pressures in vivo.
    Bailey MR; Dalecki D; Child SZ; Raeman CH; Penney DP; Blackstock DT; Carstensen EL
    J Acoust Soc Am; 1996 Dec; 100(6):3941-6. PubMed ID: 8969491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lung damage from exposure to the fields of an electrohydraulic lithotripter.
    Hartman C; Child SZ; Mayer R; Schenk E; Carstensen EL
    Ultrasound Med Biol; 1990; 16(7):675-9. PubMed ID: 2281556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavitation induced by asymmetric, distorted pulses of ultrasound: a biological test.
    Aymé EJ; Carstensen EL
    Ultrasound Med Biol; 1989; 15(1):61-6. PubMed ID: 2922882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sensitivity of Drosophila larvae to continuous-wave ultrasound.
    Child SZ; Raeman CH; Walters E; Carstensen EL
    Ultrasound Med Biol; 1992; 18(8):725-8. PubMed ID: 1440993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The acoustic fields of the Wolf electrohydraulic lithotripter.
    Campbell DS; Flynn HG; Blackstock DT; Linke C; Carstensen EL
    J Lithotr Stone Dis; 1991 Apr; 3(2):147-56. PubMed ID: 10149155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.
    Chitnis PV; Cleveland RO
    J Acoust Soc Am; 2006 Apr; 119(4):1929-32. PubMed ID: 16642802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro.
    Cleveland RO; Sapozhnikov OA; Bailey MR; Crum LA
    J Acoust Soc Am; 2000 Mar; 107(3):1745-58. PubMed ID: 10738826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of fluid properties and pulse amplitude on bubble dynamics in the field of a shock wave lithotripter.
    Choi MJ; Coleman AJ; Saunders JE
    Phys Med Biol; 1993 Nov; 38(11):1561-73. PubMed ID: 8272432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.
    Zhong P; Cioanta I; Cocks FH; Preminger GM
    J Acoust Soc Am; 1997 May; 101(5 Pt 1):2940-50. PubMed ID: 9165740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioeffects of positive and negative acoustic pressures in mice infused with microbubbles.
    Dalecki D; Child SZ; Raeman CH; Xing C; Gracewski S; Carstensen EL
    Ultrasound Med Biol; 2000 Oct; 26(8):1327-32. PubMed ID: 11120371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic cavitation generated by an extracorporeal shockwave lithotripter.
    Coleman AJ; Saunders JE; Crum LA; Dyson M
    Ultrasound Med Biol; 1987 Feb; 13(2):69-76. PubMed ID: 3590362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Cavitation fields.
    Bailey MR; Blackstock DT; Cleveland RO; Crum LA
    J Acoust Soc Am; 1999 Aug; 106(2):1149-60. PubMed ID: 10462818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments in SWL physics research.
    Zhong P; Xi X; Zhu S; Cocks FH; Preminger GM
    J Endourol; 1999 Nov; 13(9):611-7. PubMed ID: 10608511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical study of acoustic cavitation produced by "positive-only" and "negative-only" pressure waves in relation to in vivo studies.
    Church CC
    Ultrasound Med Biol; 2003 Feb; 29(2):319-30. PubMed ID: 12659920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysis of cells in Elodea leaves by pulsed and continuous wave ultrasound.
    Carstensen EL; Child SZ; Crane C; Miller MW; Parker KJ
    Ultrasound Med Biol; 1990; 16(2):167-73. PubMed ID: 2327043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical predictions of the acoustic pressure generated by a shock wave lithotripter.
    Coleman AJ; Choi MJ; Saunders JE
    Ultrasound Med Biol; 1991; 17(3):245-55. PubMed ID: 1887510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic gas-body activation in Drosophila.
    Carstensen EL; Child SZ; Lam S; Miller DL; Nyborg WL
    Ultrasound Med Biol; 1983; 9(5):473-7. PubMed ID: 6428019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter.
    Huber P; Jöchle K; Debus J
    Phys Med Biol; 1998 Oct; 43(10):3113-28. PubMed ID: 9814538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of the secondary bubble cluster produced by an electrohydraulic shock wave lithotripter.
    Zhou Y; Qin J; Zhong P
    Ultrasound Med Biol; 2012 Apr; 38(4):601-10. PubMed ID: 22390990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.