These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 2126434)

  • 1. A determination of the radial coordinate of Tyr-69 in F-actin using fluorescence energy transfer.
    Miki M; dos Remedios CG
    Biochem Int; 1990 Oct; 22(1):125-32. PubMed ID: 2126434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence energy transfer between Cys-10 residues in F-actin filaments.
    Miki M; Barden JA; Hambly BD; dos Remedios CG
    Biochem Int; 1986 May; 12(5):725-31. PubMed ID: 3089224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence energy transfer between Tyr 69 and Cys 374 in actin.
    Barden JA
    Biochem Int; 1985 Oct; 11(4):583-9. PubMed ID: 4084319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of conformational changes in actin by fluorescence resonance energy transfer between tyrosine-69 and cysteine-374.
    Miki M
    Biochemistry; 1991 Nov; 30(45):10878-84. PubMed ID: 1932011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conformational change in F-actin when myosin binds: fluorescence resonance energy transfer detects an increase in the radial coordinate of Cys-374.
    Moens PD; dos Remedios CG
    Biochemistry; 1997 Jun; 36(24):7353-60. PubMed ID: 9200683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The distances separating Tyr-69 from the high-affinity nucleotide and metal binding sites in actin.
    Barden JA; Miki M
    Biochem Int; 1986 Feb; 12(2):321-9. PubMed ID: 3964288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence resonance energy transfer between sites in G-actin. The spatial relationship between Cys-10, Tyr-69, Cys-374, the high-affinity metal and the nucleotide.
    Barden JA; dos Remedios CG
    Eur J Biochem; 1987 Oct; 168(1):103-9. PubMed ID: 3665911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence energy transfer between nucleotide binding sites in an F-actin filament.
    Miki M; Hambly BD; dos Remedios CG
    Biochim Biophys Acta; 1986 Jun; 871(2):137-41. PubMed ID: 3707968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the radial coordinate of Cys-374 in F-actin using fluorescence resonance energy transfer spectroscopy: effect of phalloidin on polymer assembly.
    Moens PD; Yee DJ; dos Remedios CG
    Biochemistry; 1994 Nov; 33(44):13102-8. PubMed ID: 7947715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of myosin LYS-553 with the C-terminus and DNase I-binding loop of actin examined by fluorescence resonance energy transfer.
    Yengo CM; Chrin LR; Berger CL
    J Struct Biol; 2000 Sep; 131(3):187-96. PubMed ID: 11052891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence resonance energy transfer between the nucleotide binding site and Cys-10 in G-actin and F-actin.
    Miki M; Barden JA; dos Remedios CG
    Biochim Biophys Acta; 1986 Jul; 872(1-2):76-82. PubMed ID: 3089284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Domain motion in actin observed by fluorescence resonance energy transfer.
    Miki M; Kouyama T
    Biochemistry; 1994 Aug; 33(33):10171-7. PubMed ID: 8060983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Ca2+-Mg2+ exchange on the flexibility and/or conformation of the small domain in monomeric actin.
    Nyitrai M; Hild G; Lakos Z; Somogyi B
    Biophys J; 1998 May; 74(5):2474-81. PubMed ID: 9591673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards atomic interpretation of F-actin filament three-dimensional reconstructions.
    Bremer A; Henn C; Goldie KN; Engel A; Smith PR; Aebi U
    J Mol Biol; 1994 Oct; 242(5):683-700. PubMed ID: 7932724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural dynamics of actin during active interaction with myosin: different effects of weakly and strongly bound myosin heads.
    Prochniewicz E; Walseth TF; Thomas DD
    Biochemistry; 2004 Aug; 43(33):10642-52. PubMed ID: 15311925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence resonance energy transfer between points on actin and the C-terminal region of tropomyosin in skeletal muscle thin filaments.
    Miki M; Hai H; Saeki K; Shitaka Y; Sano K; MaƩda Y; Wakabayashi T
    J Biochem; 2004 Jul; 136(1):39-47. PubMed ID: 15269238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of actin assembly by fluorescence energy transfer.
    Taylor DL; Reidler J; Spudich JA; Stryer L
    J Cell Biol; 1981 May; 89(2):362-7. PubMed ID: 6894758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of tightly bound Mg2+ and Ca2+, nucleotides, and phalloidin on the microsecond torsional flexibility of F-actin.
    Rebello CA; Ludescher RD
    Biochemistry; 1998 Oct; 37(41):14529-38. PubMed ID: 9772181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymerization, three-dimensional structure and mechanical properties of Ddictyostelium versus rabbit muscle actin filaments.
    Steinmetz MO; Hoenger A; Stoffler D; Noegel AA; Aebi U; Schoenenberger CA
    J Mol Biol; 2000 Oct; 303(2):171-84. PubMed ID: 11023784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic polymorphism of single actin molecules in the actin filament.
    Kozuka J; Yokota H; Arai Y; Ishii Y; Yanagida T
    Nat Chem Biol; 2006 Feb; 2(2):83-6. PubMed ID: 16415860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.