These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2126471)

  • 1. Inhibitor of ATP-sensitive K+ channel alters neither hypoxic contraction nor relaxation of rat aorta.
    Rodman DM; Hasunuma K; Peach JL; McMurtry IF
    Blood Vessels; 1990; 27(6):365-8. PubMed ID: 2126471
    [No Abstract]   [Full Text] [Related]  

  • 2. Critical role of endothelium in sustained arterial contraction during prolonged hypoxia.
    Yang BC; Mehta JL
    Am J Physiol; 1995 Mar; 268(3 Pt 2):H1015-20. PubMed ID: 7535001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-sensitive potassium channels in isolated rat aorta during physiologic, hypoxic, and low-glucose conditions.
    Hüsken BC; Pfaffendorf M; van Zwieten PA
    J Cardiovasc Pharmacol; 1997 Jan; 29(1):130-5. PubMed ID: 9007682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenine nucleotides via activation of ATP-sensitive K+ channels modulate hypoxic response in rat pulmonary artery.
    Shigemori K; Ishizaki T; Matsukawa S; Sakai A; Nakai T; Miyabo S
    Am J Physiol; 1996 May; 270(5 Pt 1):L803-9. PubMed ID: 8967515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A link between adenosine, ATP-sensitive K+ channels, potassium and muscle vasodilatation in the rat in systemic hypoxia.
    Marshall JM; Thomas T; Turner L
    J Physiol; 1993 Dec; 472():1-9. PubMed ID: 8145135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired hypoxic coronary vasodilation and ATP-sensitive potassium channel function: a manifestation of diabetic microangiopathy in humans?
    Weintraub NL
    Circ Res; 2003 Feb; 92(2):127-9. PubMed ID: 12574137
    [No Abstract]   [Full Text] [Related]  

  • 7. Differential sensitivity to ATP-sensitive potassium channel openers of norepinephrine-induced contraction of guinea pig and rat aorta.
    Saito W; Aida M; Sasaki M; Saito Y; Tanaka Y; Tanaka H; Shigenobu K
    Life Sci; 1998; 62(24):2171-9. PubMed ID: 9627075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of K(ATP) channels in diethylstilbestrol-induced relaxation in rat aorta.
    Martínez C; Sánchez M; Hidalgo A; García de Boto MJ
    Eur J Pharmacol; 2001 Feb; 413(1):109-16. PubMed ID: 11173069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metamizol acts as an ATP sensitive potassium channel opener to inhibit the contracting response induced by angiotensin II but not to norepinephrine in rat thoracic aorta smooth muscle.
    Valenzuela F; García-Saisó S; Lemini C; Ramírez-Solares R; Vidrio H; Mendoza-Fernández V
    Vascul Pharmacol; 2005 Aug; 43(2):120-7. PubMed ID: 15958287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tolbutamide reverses hypoxic pulmonary vasoconstriction in isolated rat lungs.
    Robertson BE; Paterson DJ; Peers C; Nye PC
    Q J Exp Physiol; 1989 Nov; 74(6):959-62. PubMed ID: 2594946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of lidocaine and mexiletine on relaxations to ATP-sensitive K+ channel openers in rat aortas.
    Kinoshita H; Ishikawa T; Hatano Y
    Anesthesiology; 1999 Apr; 90(4):1165-70. PubMed ID: 10201690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of glibenclamide-sensitive, ATP-dependent K+ channel activation to acetophenone analogues-mediated in vitro pulmonary artery relaxation of rat.
    Seto SW; Ho YY; Hui HN; Au AL; Kwan YW
    Life Sci; 2006 Jan; 78(6):631-9. PubMed ID: 16112684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of L-type calcium channels in hypoxic relaxation of vascular smooth muscle.
    Herrera GM; Walker BR
    J Vasc Res; 1998; 35(4):265-73. PubMed ID: 9701711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory effects of potassium channel blockers on tetramethylpyrazine-induced relaxation of rat aortic strip in vitro.
    Tsai CC; Lai TY; Huang WC; Liu IM; Cheng JT
    Life Sci; 2002 Aug; 71(11):1321-30. PubMed ID: 12106597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of nitric oxide, cyclic nucleotides, and the activation of ATP-sensitive K+ channels in the contribution of adenosine to hypoxia-induced pial artery dilation.
    Armstead WM
    J Cereb Blood Flow Metab; 1997 Jan; 17(1):100-8. PubMed ID: 8978392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Halothane and enflurane attenuate pulmonary vasodilation mediated by adenosine triphosphate-sensitive potassium channels compared to the conscious state.
    Seki S; Sato K; Nakayama M; Murray PA
    Anesthesiology; 1997 Apr; 86(4):923-35. PubMed ID: 9105237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia inhibits myogenic reactivity of renal afferent arterioles by activating ATP-sensitive K+ channels.
    Loutzenhiser RD; Parker MJ
    Circ Res; 1994 May; 74(5):861-9. PubMed ID: 8156633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of glibenclamide, a selective blocker of an ATP-K+ channel, on the anoxic response of hippocampal neurones.
    Ben Ari Y
    Pflugers Arch; 1989; 414 Suppl 1():S111-4. PubMed ID: 2506521
    [No Abstract]   [Full Text] [Related]  

  • 19. ATP-sensitive K+ channels mediate dilatation of cerebral arterioles during hypoxia.
    Taguchi H; Heistad DD; Kitazono T; Faraci FM
    Circ Res; 1994 May; 74(5):1005-8. PubMed ID: 8156623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potassium channels modulate hypoxic pulmonary vasoconstriction.
    Barman SA
    Am J Physiol; 1998 Jul; 275(1):L64-70. PubMed ID: 9688936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.