These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 21264928)
1. Reducing SAR and enhancing cerebral signal-to-noise ratio with high permittivity padding at 3 T. Yang QX; Wang J; Wang J; Collins CM; Wang C; Smith MB Magn Reson Med; 2011 Feb; 65(2):358-62. PubMed ID: 21264928 [TBL] [Abstract][Full Text] [Related]
2. A simulation study on the effect of optimized high permittivity materials on fetal imaging at 3T. van Gemert J; Brink W; Remis R; Webb A Magn Reson Med; 2019 Nov; 82(5):1822-1831. PubMed ID: 31199014 [TBL] [Abstract][Full Text] [Related]
3. Improved detection of fMRI activation in the cerebellum at 7T with dielectric pads extending the imaging region of a commercial head coil. Vaidya MV; Lazar M; Deniz CM; Haemer GG; Chen G; Bruno M; Sodickson DK; Lattanzi R; Collins CM J Magn Reson Imaging; 2018 Aug; 48(2):431-440. PubMed ID: 29357200 [TBL] [Abstract][Full Text] [Related]
4. Manipulation of image intensity distribution at 7.0 T: passive RF shimming and focusing with dielectric materials. Yang QX; Mao W; Wang J; Smith MB; Lei H; Zhang X; Ugurbil K; Chen W J Magn Reson Imaging; 2006 Jul; 24(1):197-202. PubMed ID: 16755543 [TBL] [Abstract][Full Text] [Related]
5. Optimal-permittivity Dielectric Liners for a 4.7T Transceiver Array. Kordzadeh A; De Zanche N Magn Reson Imaging; 2018 May; 48():89-95. PubMed ID: 29278763 [TBL] [Abstract][Full Text] [Related]
6. High permittivity pads reduce specific absorption rate, improve B1 homogeneity, and increase contrast-to-noise ratio for functional cardiac MRI at 3 T. Brink WM; Webb AG Magn Reson Med; 2014 Apr; 71(4):1632-40. PubMed ID: 23661547 [TBL] [Abstract][Full Text] [Related]
7. Image Artifact Management for Clinical Magnetic Resonance Imaging on a 7 T Scanner Using Single-Channel Radiofrequency Transmit Mode. Fagan AJ; Welker KM; Amrami KK; Frick MA; Watson RE; Kollasch P; Chebrolu V; Felmlee JP Invest Radiol; 2019 Dec; 54(12):781-791. PubMed ID: 31503079 [TBL] [Abstract][Full Text] [Related]
8. Quantitative assessment of the effects of high-permittivity pads in 7 Tesla MRI of the brain. Teeuwisse WM; Brink WM; Webb AG Magn Reson Med; 2012 May; 67(5):1285-93. PubMed ID: 21826732 [TBL] [Abstract][Full Text] [Related]
9. High permittivity dielectric pads improve high spatial resolution magnetic resonance imaging of the inner ear at 7 T. Brink WM; van der Jagt AM; Versluis MJ; Verbist BM; Webb AG Invest Radiol; 2014 May; 49(5):271-7. PubMed ID: 24566290 [TBL] [Abstract][Full Text] [Related]
10. Numerical assessment of the reduction of specific absorption rate by adding high dielectric materials for fetus MRI at 3 T. Luo M; Hu C; Zhuang Y; Chen W; Liu F; Xin SX Biomed Tech (Berl); 2016 Aug; 61(4):455-61. PubMed ID: 26985683 [TBL] [Abstract][Full Text] [Related]
11. High-permittivity thin dielectric padding improves fresh blood imaging of femoral arteries at 3 T. Lindley MD; Kim D; Morrell G; Heilbrun ME; Storey P; Hanrahan CJ; Lee VS Invest Radiol; 2015 Feb; 50(2):101-7. PubMed ID: 25329606 [TBL] [Abstract][Full Text] [Related]
12. Approaching ultimate intrinsic specific absorption rate in radiofrequency shimming using high-permittivity materials at 7 Tesla. Haemer GG; Vaidya M; Collins CM; Sodickson DK; Wiggins GC; Lattanzi R Magn Reson Med; 2018 Jul; 80(1):391-399. PubMed ID: 29193307 [TBL] [Abstract][Full Text] [Related]
13. Simulations of high permittivity materials for 7 T neuroimaging and evaluation of a new barium titanate-based dielectric. Teeuwisse WM; Brink WM; Haines KN; Webb AG Magn Reson Med; 2012 Apr; 67(4):912-8. PubMed ID: 22287360 [TBL] [Abstract][Full Text] [Related]
14. A review of recent developments and applications of high-permittivity dielectric shimming in magnetic resonance. Jacobs PS; Brink W; Reddy R NMR Biomed; 2024 Apr; 37(4):e5094. PubMed ID: 38214202 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of new MR invisible silicon carbide based dielectric pads for 7 T MRI. Raolison Z; Dubois M; Luong M; Neves AL; Mauconduit F; Enoch S; Mallejac N; Sabouroux P; Boumezbeur F; Berthault P; Zubkov M; Adenot-Engelvin AL; Hertz-Pannier L; Elodie G; Abdeddaim R; Vignaud A Magn Reson Imaging; 2022 Jul; 90():37-43. PubMed ID: 35413425 [TBL] [Abstract][Full Text] [Related]
17. Combination of optimized transmit arrays and some receive array reconstruction methods can yield homogeneous images at very high frequencies. Collins CM; Liu W; Swift BJ; Smith MB Magn Reson Med; 2005 Dec; 54(6):1327-32. PubMed ID: 16270331 [TBL] [Abstract][Full Text] [Related]
18. Radiofrequency safety of high permittivity pads in MRI-Impact of insulation material. Brink WM; Remis RF; Webb AG Magn Reson Med; 2023 May; 89(5):2109-2116. PubMed ID: 36708148 [TBL] [Abstract][Full Text] [Related]
19. Improvements of transmit efficiency and receive sensitivity with ultrahigh dielectric constant (uHDC) ceramics at 1.5 T and 3 T. Rupprecht S; Sica CT; Chen W; Lanagan MT; Yang QX Magn Reson Med; 2018 May; 79(5):2842-2851. PubMed ID: 28948637 [TBL] [Abstract][Full Text] [Related]
20. An optimized solenoidal head radiofrequency coil for low-field magnetic resonance imaging. Blasiak B; Volotovskyy V; Deng C; Tomanek B Magn Reson Imaging; 2009 Nov; 27(9):1302-8. PubMed ID: 19559554 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]