These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 21264965)

  • 1. Kinetic studies exploring the role of anion templation in the slippage formation of rotaxane-like structures.
    McConnell AJ; Beer PD
    Chemistry; 2011 Feb; 17(9):2724-33. PubMed ID: 21264965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calix[4]arene-based rotaxane host systems for anion recognition.
    McConnell AJ; Serpell CJ; Thompson AL; Allan DR; Beer PD
    Chemistry; 2010 Jan; 16(4):1256-64. PubMed ID: 19950342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anion-templated assembly of interpenetrated and interlocked structures.
    Beer PD; Sambrook MR; Curiel D
    Chem Commun (Camb); 2006 May; (20):2105-17. PubMed ID: 16703125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the effect of macrocycle size in anion templated imidazolium-based interpenetrated and interlocked assemblies.
    Spence GT; White NG; Beer PD
    Org Biomol Chem; 2012 Sep; 10(36):7282-91. PubMed ID: 22864390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlocked host anion recognition by an indolocarbazole-containing [2]rotaxane.
    Brown A; Mullen KM; Ryu J; Chmielewski MJ; Santos SM; Felix V; Thompson AL; Warren JE; Pascu SI; Beer PD
    J Am Chem Soc; 2009 Apr; 131(13):4937-52. PubMed ID: 19296631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Halotriazolium axle functionalised [2]rotaxanes for anion recognition: investigating the effects of halogen-bond donor and preorganisation.
    Mercurio JM; Knighton RC; Cookson J; Beer PD
    Chemistry; 2014 Sep; 20(37):11740-9. PubMed ID: 25112862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passing two strings through the same ring using an octahedral metal center as template: a new synthesis of [3]rotaxanes.
    Prikhod'ko AI; Sauvage JP
    J Am Chem Soc; 2009 May; 131(19):6794-807. PubMed ID: 19385618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting the 1,2,3-triazolium motif in anion-templated formation of a bromide-selective rotaxane host assembly.
    Mullen KM; Mercurio J; Serpell CJ; Beer PD
    Angew Chem Int Ed Engl; 2009; 48(26):4781-4. PubMed ID: 19452507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clipping and stoppering anion templated synthesis of a [2]rotaxane host system.
    Li Y; Mullen KM; Sardinha J; Félix V; Beer PD
    Dalton Trans; 2011 Dec; 40(45):12180-90. PubMed ID: 21869981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 1,2,3,4,5-pentaphenylferrocene-stoppered rotaxane capable of electrochemical anion recognition.
    Evans NH; Serpell CJ; White NG; Beer PD
    Chemistry; 2011 Oct; 17(44):12347-54. PubMed ID: 21953676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anion-induced shuttling of a naphthalimide triazolium rotaxane.
    Spence GT; Pitak MB; Beer PD
    Chemistry; 2012 Jun; 18(23):7100-8. PubMed ID: 22550020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anion templated assembly of mechanically interlocked structures.
    Vickers MS; Beer PD
    Chem Soc Rev; 2007 Feb; 36(2):211-25. PubMed ID: 17264924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anion-templated assembly of pseudorotaxanes: importance of anion template, strength of ion-pair thread association, and macrocycle ring size.
    Sambrook MR; Beer PD; Wisner JA; Paul RL; Cowley AR; Szemes F; Drew MG
    J Am Chem Soc; 2005 Feb; 127(7):2292-302. PubMed ID: 15713109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Halide selective anion recognition by an amide-triazolium axle containing [2]rotaxane.
    White NG; Colaço AR; Marques I; Félix V; Beer PD
    Org Biomol Chem; 2014 Jul; 12(27):4924-31. PubMed ID: 24876069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Metalloporphyrin-Based [2]Rotaxane Molecular Shuttles Stimulated by Neutral Lewis Base and Anion Coordination.
    Wilmore JT; Cheong Tse Y; Docker A; Whitehead C; Williams CK; Beer PD
    Chemistry; 2023 Jun; 29(33):e202300608. PubMed ID: 36929530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the pirouetting motion in rotaxanes by counterion exchange.
    Farràs P; Escudero-Adán EC; Viñas C; Teixidor F
    Inorg Chem; 2014 Aug; 53(16):8654-61. PubMed ID: 25061912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational Design for Rotaxane Synthesis through Intramolecular Slippage: Control of Activation Energy by Rigid Axle Length.
    Masai H; Terao J; Fujihara T; Tsuji Y
    Chemistry; 2016 May; 22(19):6624-30. PubMed ID: 27027800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porphyrin-functionalised rotaxanes for anion recognition.
    Brown A; Beer PD
    Dalton Trans; 2012 Jan; 41(1):118-29. PubMed ID: 22075843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of halogenated carborane monoanions in olefin hydrogenation catalysed by cationic iridium phosphine complexes.
    Moxham GL; Douglas TM; Brayshaw SK; Kociok-Köhn G; Lowe JP; Weller AS
    Dalton Trans; 2006 Dec; (46):5492-505. PubMed ID: 17117219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotaxanes capable of recognising chloride in aqueous media.
    Hancock LM; Gilday LC; Carvalho S; Costa PJ; Félix V; Serpell CJ; Kilah NL; Beer PD
    Chemistry; 2010 Nov; 16(44):13082-94. PubMed ID: 21031371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.