BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21265777)

  • 1. Nitric oxide and nitrosative stress tolerance in yeast.
    Tillmann A; Gow NA; Brown AJ
    Biochem Soc Trans; 2011 Jan; 39(1):219-23. PubMed ID: 21265777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inducible defense mechanism against nitric oxide in Candida albicans.
    Ullmann BD; Myers H; Chiranand W; Lazzell AL; Zhao Q; Vega LA; Lopez-Ribot JL; Gardner PR; Gustin MC
    Eukaryot Cell; 2004 Jun; 3(3):715-23. PubMed ID: 15189992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress adaptation in a pathogenic fungus.
    Brown AJ; Budge S; Kaloriti D; Tillmann A; Jacobsen MD; Yin Z; Ene IV; Bohovych I; Sandai D; Kastora S; Potrykus J; Ballou ER; Childers DS; Shahana S; Leach MD
    J Exp Biol; 2014 Jan; 217(Pt 1):144-55. PubMed ID: 24353214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global transcriptomic profiling of Schizosaccharomyces pombe in response to nitrosative stress.
    Biswas P; Ghosh S
    Gene; 2015 Mar; 558(2):241-53. PubMed ID: 25556969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription factors Atf1 and Sty1 promote stress tolerance under nitrosative stress in Schizosaccharomyces pombe.
    Kar P; Biswas P; Patra SK; Ghosh S
    Microbiol Res; 2018 Jan; 206():82-90. PubMed ID: 29146263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative and nitrosative stress responses during macrophage-Candida albicans biofilm interaction.
    Arce Miranda JE; Baronetti JL; Sotomayor CE; Paraje MG
    Med Mycol; 2019 Jan; 57(1):101-113. PubMed ID: 29294039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress in yeast.
    Lushchak VI
    Biochemistry (Mosc); 2010 Mar; 75(3):281-96. PubMed ID: 20370606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel role for the transcription factor Cwt1p as a negative regulator of nitrosative stress in Candida albicans.
    Sellam A; Tebbji F; Whiteway M; Nantel A
    PLoS One; 2012; 7(8):e43956. PubMed ID: 22952822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress.
    Miramón P; Dunker C; Windecker H; Bohovych IM; Brown AJ; Kurzai O; Hube B
    PLoS One; 2012; 7(12):e52850. PubMed ID: 23285201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide signaling in yeast.
    Astuti RI; Nasuno R; Takagi H
    Appl Microbiol Biotechnol; 2016 Nov; 100(22):9483-9497. PubMed ID: 27722918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrosative stress induces a novel intra-S checkpoint pathway in Schizosaccharomyces pombe involving phosphorylation of Cdc2 by Wee1.
    Biswas P; Kar P; Ghosh S
    Free Radic Biol Med; 2015 Sep; 86():145-55. PubMed ID: 26006103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CTA4 transcription factor mediates induction of nitrosative stress response in Candida albicans.
    Chiranand W; McLeod I; Zhou H; Lynn JJ; Vega LA; Myers H; Yates JR; Lorenz MC; Gustin MC
    Eukaryot Cell; 2008 Feb; 7(2):268-78. PubMed ID: 18083829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide reactivities of the two globins of the foodborne pathogen Campylobacter jejuni: roles in protection from nitrosative stress and analysis of potential reductants.
    Tinajero-Trejo M; Vreugdenhil A; Sedelnikova SE; Davidge KS; Poole RK
    Nitric Oxide; 2013 Nov; 34():65-75. PubMed ID: 23764490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Mms22p in DNA Damage Response in Candida albicans.
    Yan L; Xiong J; Lu H; Lv QZ; Ma QY; Côte P; Whiteway M; Jiang YY
    G3 (Bethesda); 2015 Oct; 5(12):2567-78. PubMed ID: 26438292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Candida albicans suppresses nitric oxide generation from macrophages via a secreted molecule.
    Collette JR; Zhou H; Lorenz MC
    PLoS One; 2014; 9(4):e96203. PubMed ID: 24755669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of Fdh3 and Glr1 to Glutathione Redox State, Stress Adaptation and Virulence in Candida albicans.
    Tillmann AT; Strijbis K; Cameron G; Radmaneshfar E; Thiel M; Munro CA; MacCallum DM; Distel B; Gow NA; Brown AJ
    PLoS One; 2015; 10(6):e0126940. PubMed ID: 26039593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans.
    Enjalbert B; MacCallum DM; Odds FC; Brown AJ
    Infect Immun; 2007 May; 75(5):2143-51. PubMed ID: 17339352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing the Fungicidal Action of Amphotericin B by Inhibiting the Nitric Oxide-Dependent Tolerance Pathway.
    Vriens K; Kumar PT; Struyfs C; Cools TL; Spincemaille P; Kokalj T; Sampaio-Marques B; Ludovico P; Lammertyn J; Cammue BPA; Thevissen K
    Oxid Med Cell Longev; 2017; 2017():4064628. PubMed ID: 29129987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance.
    Frohner IE; Bourgeois C; Yatsyk K; Majer O; Kuchler K
    Mol Microbiol; 2009 Jan; 71(1):240-52. PubMed ID: 19019164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose promotes stress resistance in the fungal pathogen Candida albicans.
    Rodaki A; Bohovych IM; Enjalbert B; Young T; Odds FC; Gow NA; Brown AJ
    Mol Biol Cell; 2009 Nov; 20(22):4845-55. PubMed ID: 19759180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.