These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 21265778)
1. An HcpR homologue from Desulfovibrio desulfuricans and its possible role in nitrate reduction and nitrosative stress. Cadby IT; Busby SJ; Cole JA Biochem Soc Trans; 2011 Jan; 39(1):224-9. PubMed ID: 21265778 [TBL] [Abstract][Full Text] [Related]
2. Regulation, sensory domains and roles of two Desulfovibrio desulfuricans ATCC27774 Crp family transcription factors, HcpR1 and HcpR2, in response to nitrosative stress. Cadby IT; Ibrahim SA; Faulkner M; Lee DJ; Browning D; Busby SJ; Lovering AL; Stapleton MR; Green J; Cole JA Mol Microbiol; 2016 Dec; 102(6):1120-1137. PubMed ID: 27671526 [TBL] [Abstract][Full Text] [Related]
3. Preferential reduction of the thermodynamically less favorable electron acceptor, sulfate, by a nitrate-reducing strain of the sulfate-reducing bacterium Desulfovibrio desulfuricans 27774. Marietou A; Griffiths L; Cole J J Bacteriol; 2009 Feb; 191(3):882-9. PubMed ID: 19047345 [TBL] [Abstract][Full Text] [Related]
4. Nitrate reduction by Desulfovibrio desulfuricans: a periplasmic nitrate reductase system that lacks NapB, but includes a unique tetraheme c-type cytochrome, NapM. Marietou A; Richardson D; Cole J; Mohan S FEMS Microbiol Lett; 2005 Jul; 248(2):217-25. PubMed ID: 15972253 [TBL] [Abstract][Full Text] [Related]
5. Understanding the response of Desulfovibrio desulfuricans ATCC 27774 to the electron acceptors nitrate and sulfate - biosynthetic costs modulate substrate selection. Sousa JR; Silveira CM; Fontes P; Roma-Rodrigues C; Fernandes AR; Van Driessche G; Devreese B; Moura I; Moura JJG; Almeida MG Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1455-1469. PubMed ID: 28847524 [TBL] [Abstract][Full Text] [Related]
6. An HcpR paralog of Desulfovibrio gigas provides protection against nitrosative stress. da Silva SM; Amaral C; Neves SS; Santos C; Pimentel C; Rodrigues-Pousada C FEBS Open Bio; 2015; 5():594-604. PubMed ID: 26273559 [TBL] [Abstract][Full Text] [Related]
7. Enzymatic properties and effect of ionic strength on periplasmic nitrate reductase (NAP) from Desulfovibrio desulfuricans ATCC 27774. Bursakov SA; Carneiro C; Almendra MJ; Duarte RO; Caldeira J; Moura I; Moura JJ Biochem Biophys Res Commun; 1997 Oct; 239(3):816-22. PubMed ID: 9367852 [TBL] [Abstract][Full Text] [Related]
9. Coordinated response of the Desulfovibrio desulfuricans 27774 transcriptome to nitrate, nitrite and nitric oxide. Cadby IT; Faulkner M; Cheneby J; Long J; van Helden J; Dolla A; Cole JA Sci Rep; 2017 Nov; 7(1):16228. PubMed ID: 29176637 [TBL] [Abstract][Full Text] [Related]
10. Impact of elevated nitrate on sulfate-reducing bacteria: a comparative study of Desulfovibrio vulgaris. He Q; He Z; Joyner DC; Joachimiak M; Price MN; Yang ZK; Yen HC; Hemme CL; Chen W; Fields MM; Stahl DA; Keasling JD; Keller M; Arkin AP; Hazen TC; Wall JD; Zhou J ISME J; 2010 Nov; 4(11):1386-97. PubMed ID: 20445634 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex--a membrane-bound redox complex involved in the sulfate respiratory pathway. Pires RH; Venceslau SS; Morais F; Teixeira M; Xavier AV; Pereira IA Biochemistry; 2006 Jan; 45(1):249-62. PubMed ID: 16388601 [TBL] [Abstract][Full Text] [Related]
12. Thioredoxin system in obligate anaerobe Desulfovibrio desulfuricans: Identification and characterization of a novel thioredoxin 2. Sarin R; Sharma YD Gene; 2006 Jul; 376(1):107-15. PubMed ID: 16580795 [TBL] [Abstract][Full Text] [Related]
13. Molecular analysis of the regulation of csiD, a carbon starvation-inducible gene in Escherichia coli that is exclusively dependent on sigma s and requires activation by cAMP-CRP. Marschall C; Labrousse V; Kreimer M; Weichart D; Kolb A; Hengge-Aronis R J Mol Biol; 1998 Feb; 276(2):339-53. PubMed ID: 9512707 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional regulation of a hybrid cluster (prismane) protein. Filenko NA; Browning DF; Cole JA Biochem Soc Trans; 2005 Feb; 33(Pt 1):195-7. PubMed ID: 15667305 [TBL] [Abstract][Full Text] [Related]
15. Mode of selectivity in cyclic AMP receptor protein-dependent promoters in Escherichia coli. Pyles EA; Lee JC Biochemistry; 1996 Jan; 35(4):1162-72. PubMed ID: 8573570 [TBL] [Abstract][Full Text] [Related]
16. Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria. Haveman SA; Greene EA; Voordouw G Environ Microbiol; 2005 Sep; 7(9):1461-5. PubMed ID: 16104868 [TBL] [Abstract][Full Text] [Related]
17. Microbial reduction of technetium by Escherichia coli and Desulfovibrio desulfuricans: enhancement via the use of high-activity strains and effect of process parameters. Lloyd JR; Thomas GH; Finlay JA; Cole JA; Macaskie LE Biotechnol Bioeng; 1999; 66(2):122-30. PubMed ID: 10567070 [TBL] [Abstract][Full Text] [Related]
18. Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Nishimura T; Vertès AA; Shinoda Y; Inui M; Yukawa H Appl Microbiol Biotechnol; 2007 Jun; 75(4):889-97. PubMed ID: 17347820 [TBL] [Abstract][Full Text] [Related]
19. Regulation of Nitrite Stress Response in Desulfovibrio vulgaris Hildenborough, a Model Sulfate-Reducing Bacterium. Rajeev L; Chen A; Kazakov AE; Luning EG; Zane GM; Novichkov PS; Wall JD; Mukhopadhyay A J Bacteriol; 2015 Nov; 197(21):3400-8. PubMed ID: 26283774 [TBL] [Abstract][Full Text] [Related]