These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 21265780)
1. Electrocatalytic reduction of nitrate and selenate by NapAB. Gates AJ; Butler CS; Richardson DJ; Butt JN Biochem Soc Trans; 2011 Jan; 39(1):236-42. PubMed ID: 21265780 [TBL] [Abstract][Full Text] [Related]
2. Roles of NapF, NapG and NapH, subunits of the Escherichia coli periplasmic nitrate reductase, in ubiquinol oxidation. Brondijk TH; Fiegen D; Richardson DJ; Cole JA Mol Microbiol; 2002 Apr; 44(1):245-55. PubMed ID: 11967083 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the reduction of selenate and tellurite by nitrate reductases. Sabaty M; Avazeri C; Pignol D; Vermeglio A Appl Environ Microbiol; 2001 Nov; 67(11):5122-6. PubMed ID: 11679335 [TBL] [Abstract][Full Text] [Related]
4. Voltammetric characterization of the aerobic energy-dissipating nitrate reductase of Paracoccus pantotrophus: exploring the activity of a redox-balancing enzyme as a function of electrochemical potential. Gates AJ; Richardson DJ; Butt JN Biochem J; 2008 Jan; 409(1):159-68. PubMed ID: 17900239 [TBL] [Abstract][Full Text] [Related]
5. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein. Simon J; Sänger M; Schuster SC; Gross R Mol Microbiol; 2003 Jul; 49(1):69-79. PubMed ID: 12823811 [TBL] [Abstract][Full Text] [Related]
6. Microbial reduction of selenate and nitrate: common themes and variations. Watts CA; Ridley H; Dridge EJ; Leaver JT; Reilly AJ; Richardson DJ; Butler CS Biochem Soc Trans; 2005 Feb; 33(Pt 1):173-5. PubMed ID: 15667298 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the expression and activity of the periplasmic nitrate reductase of Paracoccus pantotrophus in chemostat cultures. Ellington MJK; Sawers G; Sears HJ; Spiro S; Richardson DJ; Ferguson SJ Microbiology (Reading); 2003 Jun; 149(Pt 6):1533-1540. PubMed ID: 12777493 [TBL] [Abstract][Full Text] [Related]
9. Selenate reduction by Enterobacter cloacae SLD1a-1 is catalysed by a molybdenum-dependent membrane-bound enzyme that is distinct from the membrane-bound nitrate reductase. Watts CA; Ridley H; Condie KL; Leaver JT; Richardson DJ; Butler CS FEMS Microbiol Lett; 2003 Nov; 228(2):273-9. PubMed ID: 14638434 [TBL] [Abstract][Full Text] [Related]
10. Thiocyanate binding to the molybdenum centre of the periplasmic nitrate reductase from Paracoccus pantotrophus. Butler CS; Charnock JM; Garner CD; Thomson AJ; Ferguson SJ; Berks BC; Richardson DJ Biochem J; 2000 Dec; 352 Pt 3(Pt 3):859-64. PubMed ID: 11104696 [TBL] [Abstract][Full Text] [Related]
11. The terminal reductases for selenate and nitrate respiration in Thauera selenatis are two distinct enzymes. Rech SA; Macy JM J Bacteriol; 1992 Nov; 174(22):7316-20. PubMed ID: 1429454 [TBL] [Abstract][Full Text] [Related]
12. Periplasmic nitrate reductase (NapABC enzyme) supports anaerobic respiration by Escherichia coli K-12. Stewart V; Lu Y; Darwin AJ J Bacteriol; 2002 Mar; 184(5):1314-23. PubMed ID: 11844760 [TBL] [Abstract][Full Text] [Related]
13. Effect of periplasmic nitrate reductase on diauxic lag of Paracoccus pantotrophus. Durvasula K; Jantama K; Fischer K; Vega A; Koopman B; Svoronos SA Biotechnol Prog; 2009; 25(4):973-9. PubMed ID: 19399903 [TBL] [Abstract][Full Text] [Related]
14. NapGH components of the periplasmic nitrate reductase of Escherichia coli K-12: location, topology and physiological roles in quinol oxidation and redox balancing. Brondijk TH; Nilavongse A; Filenko N; Richardson DJ; Cole JA Biochem J; 2004 Apr; 379(Pt 1):47-55. PubMed ID: 14674886 [TBL] [Abstract][Full Text] [Related]
15. Regulation of the nap operon encoding the periplasmic nitrate reductase of Paracoccus pantotrophus: delineation of DNA sequences required for redox control. Ellington MJ; Fosdike WL; Sawers RG; Richardson DJ; Ferguson SJ Arch Microbiol; 2006 Jan; 184(5):298-304. PubMed ID: 16333617 [TBL] [Abstract][Full Text] [Related]
16. Resolution of distinct membrane-bound enzymes from Enterobacter cloacae SLD1a-1 that are responsible for selective reduction of nitrate and selenate oxyanions. Ridley H; Watts CA; Richardson DJ; Butler CS Appl Environ Microbiol; 2006 Aug; 72(8):5173-80. PubMed ID: 16885262 [TBL] [Abstract][Full Text] [Related]
17. Evolution of the soluble nitrate reductase: defining the monomeric periplasmic nitrate reductase subgroup. Jepson BJ; Marietou A; Mohan S; Cole JA; Butler CS; Richardson DJ Biochem Soc Trans; 2006 Feb; 34(Pt 1):122-6. PubMed ID: 16417499 [TBL] [Abstract][Full Text] [Related]
18. Enterobacter cloacae SLD1a-1 gains a selective advantage from selenate reduction when growing in nitrate-depleted anaerobic environments. Leaver JT; Richardson DJ; Butler CS J Ind Microbiol Biotechnol; 2008 Aug; 35(8):867-73. PubMed ID: 18449586 [TBL] [Abstract][Full Text] [Related]
19. Physiological roles for two periplasmic nitrate reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025). Hartsock A; Shapleigh JP J Bacteriol; 2011 Dec; 193(23):6483-9. PubMed ID: 21949073 [TBL] [Abstract][Full Text] [Related]
20. Control of periplasmic nitrate reductase gene expression (napEDABC) from Paracoccus pantotrophus in response to oxygen and carbon substrates. Sears HJ; Sawers G; Berks BC; Ferguson SJ; Richardson DJ Microbiology (Reading); 2000 Nov; 146 ( Pt 11)():2977-2985. PubMed ID: 11065376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]