These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 21265791)
1. The Pseudomonas aeruginosa DNR transcription factor: light and shade of nitric oxide-sensing mechanisms. Giardina G; Castiglione N; Caruso M; Cutruzzolà F; Rinaldo S Biochem Soc Trans; 2011 Jan; 39(1):294-8. PubMed ID: 21265791 [TBL] [Abstract][Full Text] [Related]
2. NO sensing in Pseudomonas aeruginosa: structure of the transcriptional regulator DNR. Giardina G; Rinaldo S; Johnson KA; Di Matteo A; Brunori M; Cutruzzolà F J Mol Biol; 2008 May; 378(5):1002-15. PubMed ID: 18420222 [TBL] [Abstract][Full Text] [Related]
3. A dramatic conformational rearrangement is necessary for the activation of DNR from Pseudomonas aeruginosa. Crystal structure of wild-type DNR. Giardina G; Rinaldo S; Castiglione N; Caruso M; Cutruzzolà F Proteins; 2009 Oct; 77(1):174-80. PubMed ID: 19415759 [TBL] [Abstract][Full Text] [Related]
4. Unusual heme binding properties of the dissimilative nitrate respiration regulator, a bacterial nitric oxide sensor. Rinaldo S; Castiglione N; Giardina G; Caruso M; Arcovito A; Longa SD; D'Angelo P; Cutruzzolà F Antioxid Redox Signal; 2012 Nov; 17(9):1178-89. PubMed ID: 22424265 [TBL] [Abstract][Full Text] [Related]
5. Nitric oxide signaling and NO dependent transcriptional control in bacterial denitrification by members of the FNR-CRP regulator family. Zumft WG J Mol Microbiol Biotechnol; 2002 May; 4(3):277-86. PubMed ID: 11931559 [TBL] [Abstract][Full Text] [Related]
6. N-oxide sensing and denitrification: the DNR transcription factors. Rinaldo S; Giardina G; Brunori M; Cutruzzolà F Biochem Soc Trans; 2006 Feb; 34(Pt 1):185-7. PubMed ID: 16417517 [TBL] [Abstract][Full Text] [Related]
7. N-oxide sensing in Pseudomonas aeruginosa: expression and preliminary characterization of DNR, an FNR-CRP type transcriptional regulator. Rinaldo S; Giardina G; Brunori M; Cutruzzolà F Biochem Soc Trans; 2005 Feb; 33(Pt 1):184-6. PubMed ID: 15667301 [TBL] [Abstract][Full Text] [Related]
8. Fine-tuned regulation of the dissimilatory nitrite reductase gene by oxygen and nitric oxide in Pseudomonas aeruginosa. Kuroki M; Igarashi Y; Ishii M; Arai H Environ Microbiol Rep; 2014 Dec; 6(6):792-801. PubMed ID: 25186017 [TBL] [Abstract][Full Text] [Related]
10. The transcription factor DNR from Pseudomonas aeruginosa specifically requires nitric oxide and haem for the activation of a target promoter in Escherichia coli. Castiglione N; Rinaldo S; Giardina G; Cutruzzolà F Microbiology (Reading); 2009 Sep; 155(Pt 9):2838-2844. PubMed ID: 19477902 [TBL] [Abstract][Full Text] [Related]
11. Activation of a consensus FNR-dependent promoter by DNR of Pseudomonas aeruginosa in response to nitrite. Hasegawa N; Arai H; Igarashi Y FEMS Microbiol Lett; 1998 Sep; 166(2):213-7. PubMed ID: 9770276 [TBL] [Abstract][Full Text] [Related]
12. Anaerobic adaptation in Pseudomonas aeruginosa: definition of the Anr and Dnr regulons. Trunk K; Benkert B; Quäck N; Münch R; Scheer M; Garbe J; Jänsch L; Trost M; Wehland J; Buer J; Jahn M; Schobert M; Jahn D Environ Microbiol; 2010 Jun; 12(6):1719-33. PubMed ID: 20553552 [TBL] [Abstract][Full Text] [Related]
13. Reactions of nitric oxide and oxygen with the regulator of fumarate and nitrate reduction, a global transcriptional regulator, during anaerobic growth of Escherichia coli. Crack JC; Le Brun NE; Thomson AJ; Green J; Jervis AJ Methods Enzymol; 2008; 437():191-209. PubMed ID: 18433630 [TBL] [Abstract][Full Text] [Related]
14. Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. Körner H; Sofia HJ; Zumft WG FEMS Microbiol Rev; 2003 Dec; 27(5):559-92. PubMed ID: 14638413 [TBL] [Abstract][Full Text] [Related]
15. Expression of the nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR. Arai H; Igarashi Y; Kodama T FEBS Lett; 1995 Aug; 371(1):73-6. PubMed ID: 7664887 [TBL] [Abstract][Full Text] [Related]
17. Crp of Streptomyces coelicolor is the third transcription factor of the large CRP-FNR superfamily able to bind cAMP. Derouaux A; Dehareng D; Lecocq E; Halici S; Nothaft H; Giannotta F; Moutzourelis G; Dusart J; Devreese B; Titgemeyer F; Van Beeumen J; Rigali S Biochem Biophys Res Commun; 2004 Dec; 325(3):983-90. PubMed ID: 15541386 [TBL] [Abstract][Full Text] [Related]
18. Novel biochemical properties of a CRP/FNR family transcription factor from Mycobacterium tuberculosis. Akhter Y; Tundup S; Hasnain SE Int J Med Microbiol; 2007 Oct; 297(6):451-7. PubMed ID: 17702648 [TBL] [Abstract][Full Text] [Related]
19. A multitude of CRP/FNR-like transcription proteins in Bradyrhizobium japonicum. Mesa S; Hennecke H; Fischer HM Biochem Soc Trans; 2006 Feb; 34(Pt 1):156-9. PubMed ID: 16417509 [TBL] [Abstract][Full Text] [Related]
20. Molecular analysis of the regulation of csiD, a carbon starvation-inducible gene in Escherichia coli that is exclusively dependent on sigma s and requires activation by cAMP-CRP. Marschall C; Labrousse V; Kreimer M; Weichart D; Kolb A; Hengge-Aronis R J Mol Biol; 1998 Feb; 276(2):339-53. PubMed ID: 9512707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]