These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 21266062)
21. Responses of plant biomass, photosynthesis and lipid peroxidation to warming and precipitation change in two dominant species (Stipa grandis and Leymus chinensis) from North China Grasslands. Song X; Wang Y; Lv X Ecol Evol; 2016 Mar; 6(6):1871-82. PubMed ID: 26933491 [TBL] [Abstract][Full Text] [Related]
22. Long-term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species. Zhou SX; Medlyn BE; Prentice IC Ann Bot; 2016 Jan; 117(1):133-44. PubMed ID: 26493470 [TBL] [Abstract][Full Text] [Related]
23. High C3 photosynthetic capacity and high intrinsic water use efficiency underlies the high productivity of the bioenergy grass Arundo donax. Webster RJ; Driever SM; Kromdijk J; McGrath J; Leakey AD; Siebke K; Demetriades-Shah T; Bonnage S; Peloe T; Lawson T; Long SP Sci Rep; 2016 Feb; 6():20694. PubMed ID: 26860066 [TBL] [Abstract][Full Text] [Related]
24. [CO2 response process and its simulation of Prunus sibirica photosynthesis under different soil moisture conditions]. Wu Q; Zhang GC; Pei B; Xu ZQ; Zhao Y; Fang LD Ying Yong Sheng Tai Xue Bao; 2013 Jun; 24(6):1517-24. PubMed ID: 24066534 [TBL] [Abstract][Full Text] [Related]
25. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO₂] and temperatures under fully open air field conditions. Rosenthal DM; Ruiz-Vera UM; Siebers MH; Gray SB; Bernacchi CJ; Ort DR Plant Sci; 2014 Sep; 226():136-46. PubMed ID: 25113459 [TBL] [Abstract][Full Text] [Related]
26. Increased invasive potential of non-native Phragmites australis: elevated CO2 and temperature alleviate salinity effects on photosynthesis and growth. Eller F; Lambertini C; Nguyen LX; Brix H Glob Chang Biol; 2014 Feb; 20(2):531-43. PubMed ID: 23913622 [TBL] [Abstract][Full Text] [Related]
28. Growing season ecosystem and leaf-level gas exchange of an exotic and native semiarid bunchgrass. Hamerlynck EP; Scott RL; Moran MS; Keefer TO; Huxman TE Oecologia; 2010 Jul; 163(3):561-70. PubMed ID: 20063168 [TBL] [Abstract][Full Text] [Related]
29. Aboveground net primary productivity not CO2 exchange remain stable under three timing of extreme drought in a semi-arid steppe. Zhang H; Yu H; Zhou C; Zhao H; Qian X PLoS One; 2019; 14(3):e0214418. PubMed ID: 30913282 [TBL] [Abstract][Full Text] [Related]
30. Climate warming alters photosynthetic responses to elevated CO Sage E; Heisler-White J; Morgan J; Pendall E; Williams DG Am J Bot; 2020 Sep; 107(9):1238-1252. PubMed ID: 32931042 [TBL] [Abstract][Full Text] [Related]
31. Inter- and under-canopy soil water, leaf-level and whole-plant gas exchange dynamics of a semi-arid perennial C4 grass. Hamerlynck EP; Scott RL; Susan Moran M; Schwander AM; Connor E; Huxman TE Oecologia; 2011 Jan; 165(1):17-29. PubMed ID: 20809408 [TBL] [Abstract][Full Text] [Related]
32. Responses of chlorophyll fluorescence and nitrogen level of Leymus chinensis seedling to changes of soil moisture and temperature. Xu ZZ; Zhou GS; Li H J Environ Sci (China); 2004; 16(4):666-9. PubMed ID: 15495977 [TBL] [Abstract][Full Text] [Related]
33. Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Redondo-Gómez S; Mateos-Naranjo E; Davy AJ; Fernández-Muñoz F; Castellanos EM; Luque T; Figueroa ME Ann Bot; 2007 Sep; 100(3):555-63. PubMed ID: 17684026 [TBL] [Abstract][Full Text] [Related]
34. Combined impact of heat stress and phosphate deficiency on growth and photochemical activity of sheepgrass (Leymus chinensis). Li L; Yang H; Liu P; Ren W; Wu X; Huang F J Plant Physiol; 2018 Dec; 231():271-276. PubMed ID: 30336401 [TBL] [Abstract][Full Text] [Related]
35. Disentangling the contributions of ontogeny and water stress to photosynthetic limitations in almond trees. Egea G; González-Real MM; Baille A; Nortes PA; Diaz-Espejo A Plant Cell Environ; 2011 Jun; 34(6):962-979. PubMed ID: 21388414 [TBL] [Abstract][Full Text] [Related]
36. Effects of soil temperature and elevated atmospheric CO2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings. Zhang S; Dang QL Tree Physiol; 2005 May; 25(5):523-31. PubMed ID: 15741153 [TBL] [Abstract][Full Text] [Related]
37. Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert grassland. Throop HL; Reichmann LG; Sala OE; Archer SR Oecologia; 2012 Jun; 169(2):373-83. PubMed ID: 22159870 [TBL] [Abstract][Full Text] [Related]
38. Response of photosynthesis, growth and water relations of a savannah-adapted tree and grass grown across high to low CO2. Quirk J; Bellasio C; Johnson DA; Beerling DJ Ann Bot; 2019 Aug; 124(1):77-90. PubMed ID: 31008510 [TBL] [Abstract][Full Text] [Related]
39. The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit. Kawase M; Hanba YT; Katsuhara M J Plant Res; 2013 Jul; 126(4):517-27. PubMed ID: 23371744 [TBL] [Abstract][Full Text] [Related]
40. Large influence of soil moisture on long-term terrestrial carbon uptake. Green JK; Seneviratne SI; Berg AM; Findell KL; Hagemann S; Lawrence DM; Gentine P Nature; 2019 Jan; 565(7740):476-479. PubMed ID: 30675043 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]