These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 21266073)

  • 1. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model.
    Stebounova LV; Adamcakova-Dodd A; Kim JS; Park H; O'Shaughnessy PT; Grassian VH; Thorne PS
    Part Fibre Toxicol; 2011 Jan; 8(1):5. PubMed ID: 21266073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models.
    Adamcakova-Dodd A; Stebounova LV; Kim JS; Vorrink SU; Ault AP; O'Shaughnessy PT; Grassian VH; Thorne PS
    Part Fibre Toxicol; 2014 Apr; 11():15. PubMed ID: 24684892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Murine pulmonary responses after sub-chronic exposure to aluminum oxide-based nanowhiskers.
    Adamcakova-Dodd A; Stebounova LV; O'Shaughnessy PT; Kim JS; Grassian VH; Thorne PS
    Part Fibre Toxicol; 2012 Jun; 9():22. PubMed ID: 22713230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm.
    Grassian VH; O'shaughnessy PT; Adamcakova-Dodd A; Pettibone JM; Thorne PS
    Environ Health Perspect; 2007 Mar; 115(3):397-402. PubMed ID: 17431489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NTP Toxicology and Carcinogenesis Studies of Talc (CAS No. 14807-96-6)(Non-Asbestiform) in F344/N Rats and B6C3F1 Mice (Inhalation Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1993 Sep; 421():1-287. PubMed ID: 12616290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm silver nanoparticle aerosols in healthy adult rats after a single 1½-hour inhalation exposure.
    Kreyling WG; Holzwarth U; Hirn S; Schleh C; Wenk A; Schäffler M; Haberl N; Gibson N
    Part Fibre Toxicol; 2020 Jun; 17(1):21. PubMed ID: 32503677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulmonary effects of inhalation of spark-generated silver nanoparticles in Brown-Norway and Sprague-Dawley rats.
    Seiffert J; Buckley A; Leo B; Martin NG; Zhu J; Dai R; Hussain F; Guo C; Warren J; Hodgson A; Gong J; Ryan MP; Zhang JJ; Porter A; Tetley TD; Gow A; Smith R; Chung KF
    Respir Res; 2016 Jul; 17(1):85. PubMed ID: 27435725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lobar evenness of deposition/retention in rat lungs of inhaled silver nanoparticles: an approach for reducing animal use while maximizing endpoints.
    Park JD; Kim JK; Jo MS; Kim YH; Jeon KS; Lee JH; Faustman EM; Lee HK; Ahn K; Gulumian M; Oberdörster G; Yu IJ
    Part Fibre Toxicol; 2019 Jan; 16(1):2. PubMed ID: 30616672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles.
    Sung JH; Ji JH; Yoon JU; Kim DS; Song MY; Jeong J; Han BS; Han JH; Chung YH; Kim J; Kim TS; Chang HK; Lee EJ; Lee JH; Yu IJ
    Inhal Toxicol; 2008 Apr; 20(6):567-74. PubMed ID: 18444009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles.
    Braakhuis HM; Gosens I; Krystek P; Boere JA; Cassee FR; Fokkens PH; Post JA; van Loveren H; Park MV
    Part Fibre Toxicol; 2014 Sep; 11():49. PubMed ID: 25227272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.
    Sayes CM; Reed KL; Warheit DB
    Toxicol Sci; 2007 May; 97(1):163-80. PubMed ID: 17301066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminum oxyhydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size.
    Pauluhn J
    Toxicol Sci; 2009 May; 109(1):152-67. PubMed ID: 19251949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhalation of high concentrations of low toxicity dusts in rats results in impaired pulmonary clearance mechanisms and persistent inflammation.
    Warheit DB; Hansen JF; Yuen IS; Kelly DP; Snajdr SI; Hartsky MA
    Toxicol Appl Pharmacol; 1997 Jul; 145(1):10-22. PubMed ID: 9221819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential pulmonary effects of CoO and La2O3 metal oxide nanoparticle responses during aerosolized inhalation in mice.
    Sisler JD; Li R; McKinney W; Mercer RR; Ji Z; Xia T; Wang X; Shaffer J; Orandle M; Mihalchik AL; Battelli L; Chen BT; Wolfarth M; Andrew ME; Schwegler-Berry D; Porter DW; Castranova V; Nel A; Qian Y
    Part Fibre Toxicol; 2016 Aug; 13(1):42. PubMed ID: 27527840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles.
    Bermudez E; Mangum JB; Wong BA; Asgharian B; Hext PM; Warheit DB; Everitt JI
    Toxicol Sci; 2004 Feb; 77(2):347-57. PubMed ID: 14600271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulmonary cellular effects in rats following aerosol exposures to ultrafine Kevlar aramid fibrils: evidence for biodegradability of inhaled fibrils.
    Warheit DB; Kellar KA; Hartsky MA
    Toxicol Appl Pharmacol; 1992 Oct; 116(2):225-39. PubMed ID: 1412467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Even lobar deposition of poorly soluble gold nanoparticles (AuNPs) is similar to that of soluble silver nanoparticles (AgNPs).
    Kim HP; Kim JK; Jo MS; Park JD; Ahn K; Gulumian M; Oberdörster G; Yu IJ
    Part Fibre Toxicol; 2020 Oct; 17(1):54. PubMed ID: 33081787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode of silver clearance following 28-day inhalation exposure to silver nanoparticles determined from lung burden assessment including post-exposure observation periods.
    Jo MS; Kim JK; Kim Y; Kim HP; Kim HS; Ahn K; Lee JH; Faustman EM; Gulumian M; Kelman B; Yu IJ
    Arch Toxicol; 2020 Mar; 94(3):773-784. PubMed ID: 32157349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulmonary and systemic effects of zinc-containing emission particles in three rat strains: multiple exposure scenarios.
    Kodavanti UP; Schladweiler MC; Ledbetter AD; Hauser R; Christiani DC; Samet JM; McGee J; Richards JH; Costa DL
    Toxicol Sci; 2002 Nov; 70(1):73-85. PubMed ID: 12388837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Usefulness of myeloperoxidase as a biomarker for the ranking of pulmonary toxicity of nanomaterials.
    Tomonaga T; Izumi H; Yoshiura Y; Myojo T; Oyabu T; Lee BW; Okada T; Marui T; Wang KY; Kubo M; Shimada M; Noguchi S; Nishida C; Yatera K; Morimoto Y
    Part Fibre Toxicol; 2018 Oct; 15(1):41. PubMed ID: 30352603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.