BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 21266175)

  • 1. Crystal structure of constitutively monomeric E. coli Hsp33 mutant with chaperone activity.
    Chi SW; Jeong DG; Woo JR; Lee HS; Park BC; Kim BY; Erikson RL; Ryu SE; Kim SJ
    FEBS Lett; 2011 Feb; 585(4):664-70. PubMed ID: 21266175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of proteolytic fragments of the redox-sensitive Hsp33 with constitutive chaperone activity.
    Kim SJ; Jeong DG; Chi SW; Lee JS; Ryu SE
    Nat Struct Biol; 2001 May; 8(5):459-66. PubMed ID: 11323724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Verification of the interdomain contact site in the inactive monomer, and the domain-swapped fold in the active dimer of Hsp33 in solution.
    Lee YS; Ryu KS; Kim SJ; Ko HS; Sim DW; Jeon YH; Kim EH; Choi WS; Won HS
    FEBS Lett; 2012 Feb; 586(4):411-5. PubMed ID: 22265690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of the redox-regulated chaperone Hsp33 by domain unfolding.
    Graf PC; Martinez-Yamout M; VanHaerents S; Lilie H; Dyson HJ; Jakob U
    J Biol Chem; 2004 May; 279(19):20529-38. PubMed ID: 15023991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The essential role of the flexible termini in the temperature-responsiveness of the oligomeric state and chaperone-like activity for the polydisperse small heat shock protein IbpB from Escherichia coli.
    Jiao W; Qian M; Li P; Zhao L; Chang Z
    J Mol Biol; 2005 Apr; 347(4):871-84. PubMed ID: 15769476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique Unfoldase/Aggregase Activity of a Molecular Chaperone Hsp33 in its Holding-Inactive State.
    Jo KS; Kim JH; Ryu KS; Kang JS; Wang CY; Lee YS; Seo MD; Lee YH; Won HS
    J Mol Biol; 2019 Mar; 431(7):1468-1480. PubMed ID: 30822413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK.
    Grimshaw JP; Siegenthaler RK; Züger S; Schönfeld HJ; Z'graggen BR; Christen P
    J Mol Biol; 2005 Nov; 353(4):888-96. PubMed ID: 16198374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of the reduced, Zn2+-bound form of the B. subtilis Hsp33 chaperone and its implications for the activation mechanism.
    Janda I; Devedjiev Y; Derewenda U; Dauter Z; Bielnicki J; Cooper DR; Graf PC; Joachimiak A; Jakob U; Derewenda ZS
    Structure; 2004 Oct; 12(10):1901-7. PubMed ID: 15458638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 2.2 A crystal structure of Hsp33: a heat shock protein with redox-regulated chaperone activity.
    Vijayalakshmi J; Mukhergee MK; Graumann J; Jakob U; Saper MA
    Structure; 2001 May; 9(5):367-75. PubMed ID: 11377197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HSP33 in eukaryotes - an evolutionary tale of a chaperone adapted to photosynthetic organisms.
    Segal N; Shapira M
    Plant J; 2015 Jun; 82(5):850-60. PubMed ID: 25892083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox-regulated molecular chaperones.
    Graf PC; Jakob U
    Cell Mol Life Sci; 2002 Oct; 59(10):1624-31. PubMed ID: 12475172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the L2 loop in the regulation and maintaining the proteolytic activity of HtrA (DegP) protein from Escherichia coli.
    Sobiecka-Szkatula A; Gieldon A; Scire A; Tanfani F; Figaj D; Koper T; Ciarkowski J; Lipinska B; Skorko-Glonek J
    Arch Biochem Biophys; 2010 Aug; 500(2):123-30. PubMed ID: 20515644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of Hsc20, a J-type Co-chaperone from Escherichia coli.
    Cupp-Vickery JR; Vickery LE
    J Mol Biol; 2000 Dec; 304(5):835-45. PubMed ID: 11124030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of Hsp33 protein from Bacillus psychrosaccharolyticus; additional function of HSP33 on resistance to solvent stress.
    Kang HJ; Heo DH; Choi SW; Kim KN; Shim J; Kim CW; Sung HC; Yun CW
    Biochem Biophys Res Commun; 2007 Jul; 358(3):743-50. PubMed ID: 17512907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The KdpC subunit of the Escherichia coli K+-transporting KdpB P-type ATPase acts as a catalytic chaperone.
    Irzik K; Pfrötzschner J; Goss T; Ahnert F; Haupt M; Greie JC
    FEBS J; 2011 Sep; 278(17):3041-53. PubMed ID: 21711450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the redox-regulated molecular chaperone Hsp33--a two-step mechanism.
    Graumann J; Lilie H; Tang X; Tucker KA; Hoffmann JH; Vijayalakshmi J; Saper M; Bardwell JC; Jakob U
    Structure; 2001 May; 9(5):377-87. PubMed ID: 11377198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33.
    Winter J; Linke K; Jatzek A; Jakob U
    Mol Cell; 2005 Feb; 17(3):381-92. PubMed ID: 15694339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone.
    Cremers CM; Reichmann D; Hausmann J; Ilbert M; Jakob U
    J Biol Chem; 2010 Apr; 285(15):11243-51. PubMed ID: 20139072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a redox-regulated chaperone network.
    Hoffmann JH; Linke K; Graf PC; Lilie H; Jakob U
    EMBO J; 2004 Jan; 23(1):160-8. PubMed ID: 14685279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of cysteine residues in Zn2 to zinc fingers and thiol-disulfide oxidoreductase activities of chaperone DnaJ.
    Shi YY; Tang W; Hao SF; Wang CC
    Biochemistry; 2005 Feb; 44(5):1683-9. PubMed ID: 15683252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.