These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 21266190)

  • 1. Protein phosphorylation in bacterial signal transduction.
    Kobir A; Shi L; Boskovic A; Grangeasse C; Franjevic D; Mijakovic I
    Biochim Biophys Acta; 2011 Oct; 1810(10):989-94. PubMed ID: 21266190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights from site-specific phosphoproteomics in bacteria.
    Soufi B; Jers C; Hansen ME; Petranovic D; Mijakovic I
    Biochim Biophys Acta; 2008 Jan; 1784(1):186-92. PubMed ID: 17881301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics reveals evidence of cross-talk between protein modifications in bacteria: focus on acetylation and phosphorylation.
    Soufi B; Soares NC; Ravikumar V; Macek B
    Curr Opin Microbiol; 2012 Jun; 15(3):357-63. PubMed ID: 22633124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial phosphoproteomic analysis reveals the correlation between protein phosphorylation and bacterial pathogenicity.
    Ge R; Shan W
    Genomics Proteomics Bioinformatics; 2011 Oct; 9(4-5):119-27. PubMed ID: 22196355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of phosphoproteomics on studies of bacterial physiology.
    Mijakovic I; Macek B
    FEMS Microbiol Rev; 2012 Jul; 36(4):877-92. PubMed ID: 22091997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation.
    Cousin C; Derouiche A; Shi L; Pagot Y; Poncet S; Mijakovic I
    FEMS Microbiol Lett; 2013 Sep; 346(1):11-9. PubMed ID: 23731382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond gene expression: the impact of protein post-translational modifications in bacteria.
    Cain JA; Solis N; Cordwell SJ
    J Proteomics; 2014 Jan; 97():265-86. PubMed ID: 23994099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global phosphoproteomic analysis reveals diverse functions of serine/threonine/tyrosine phosphorylation in the model cyanobacterium Synechococcus sp. strain PCC 7002.
    Yang MK; Qiao ZX; Zhang WY; Xiong Q; Zhang J; Li T; Ge F; Zhao JD
    J Proteome Res; 2013 Apr; 12(4):1909-23. PubMed ID: 23461524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein phosphorylation from the perspective of systems biology.
    Derouiche A; Cousin C; Mijakovic I
    Curr Opin Biotechnol; 2012 Aug; 23(4):585-90. PubMed ID: 22119098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific analysis of bacterial phosphoproteomes.
    Macek B; Mijakovic I
    Proteomics; 2011 Aug; 11(15):3002-11. PubMed ID: 21726046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the diversity of protein modifications: special bacterial phosphorylation systems.
    Mijakovic I; Grangeasse C; Turgay K
    FEMS Microbiol Rev; 2016 May; 40(3):398-417. PubMed ID: 26926353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoproteomics in bacteria: towards a systemic understanding of bacterial phosphorylation networks.
    Jers C; Soufi B; Grangeasse C; Deutscher J; Mijakovic I
    Expert Rev Proteomics; 2008 Aug; 5(4):619-27. PubMed ID: 18761471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histidine kinases and response regulators in networks.
    Jung K; Fried L; Behr S; Heermann R
    Curr Opin Microbiol; 2012 Apr; 15(2):118-24. PubMed ID: 22172627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of protein phosphorylation on serine/threonine and tyrosine in the virulence of bacterial pathogens.
    Cozzone AJ
    J Mol Microbiol Biotechnol; 2005; 9(3-4):198-213. PubMed ID: 16415593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoproteomics in analyzing signaling pathways.
    Mukherji M
    Expert Rev Proteomics; 2005 Jan; 2(1):117-28. PubMed ID: 15966857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards functional phosphoproteomics by mapping differential phosphorylation events in signaling networks.
    de la Fuente van Bentem S; Mentzen WI; de la Fuente A; Hirt H
    Proteomics; 2008 Nov; 8(21):4453-65. PubMed ID: 18972525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae.
    Sun X; Ge F; Xiao CL; Yin XF; Ge R; Zhang LH; He QY
    J Proteome Res; 2010 Jan; 9(1):275-82. PubMed ID: 19894762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-dependent protein kinases in bacteria.
    Cozzone AJ
    J Cell Biochem; 1993 Jan; 51(1):7-13. PubMed ID: 8432746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tyrosine-kinases in bacteria: from a matter of controversy to the status of key regulatory enzymes.
    Bechet E; Guiral S; Torres S; Mijakovic I; Cozzone AJ; Grangeasse C
    Amino Acids; 2009 Sep; 37(3):499-507. PubMed ID: 19189200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative phosphoproteomics--an emerging key technology in signal-transduction research.
    Schreiber TB; Mäusbacher N; Breitkopf SB; Grundner-Culemann K; Daub H
    Proteomics; 2008 Nov; 8(21):4416-32. PubMed ID: 18837465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.