These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 21266316)

  • 1. Finite-Time Attitude Tracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network.
    An-Min Zou ; Kumar KD; Zeng-Guang Hou ; Xi Liu
    IEEE Trans Syst Man Cybern B Cybern; 2011 Aug; 41(4):950-63. PubMed ID: 21266316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.
    Zou AM; Dev Kumar K; Hou ZG
    IEEE Trans Neural Netw; 2010 Sep; 21(9):1457-71. PubMed ID: 20729168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural network-based distributed attitude coordination control for spacecraft formation flying with input saturation.
    Zou AM; Kumar KD
    IEEE Trans Neural Netw Learn Syst; 2012 Jul; 23(7):1155-62. PubMed ID: 24807141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust fault-tolerant tracking control design for spacecraft under control input saturation.
    Bustan D; Pariz N; Sani SK
    ISA Trans; 2014 Jul; 53(4):1073-80. PubMed ID: 24751476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique.
    Song Z; Li H; Sun K
    ISA Trans; 2014 Jan; 53(1):117-24. PubMed ID: 24055099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite-time fault tolerant attitude stabilization control for rigid spacecraft.
    Huo X; Hu Q; Xiao B
    ISA Trans; 2014 Mar; 53(2):241-50. PubMed ID: 24365074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust inertia-free attitude takeover control of postcapture combined spacecraft with guaranteed prescribed performance.
    Luo J; Wei C; Dai H; Yin Z; Wei X; Yuan J
    ISA Trans; 2018 Mar; 74():28-44. PubMed ID: 29336791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decentralized finite-time attitude synchronization for multiple rigid spacecraft via a novel disturbance observer.
    Zong Q; Shao S
    ISA Trans; 2016 Nov; 65():150-163. PubMed ID: 27615668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Integral of Neural Network and Error Sign Control of MIMO Nonlinear Systems.
    Yang Q; Jagannathan S; Sun Y
    IEEE Trans Neural Netw Learn Syst; 2015 Dec; 26(12):3278-86. PubMed ID: 26340791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural-Network-Based Adaptive Finite-Time Output Feedback Control for Spacecraft Attitude Tracking.
    Zhao L; Yu J; Chen X
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):8116-8123. PubMed ID: 35108211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trajectory tracking control of omnidirectional wheeled mobile manipulators: robust neural network-based sliding mode approach.
    Xu D; Zhao D; Yi J; Tan X
    IEEE Trans Syst Man Cybern B Cybern; 2009 Jun; 39(3):788-99. PubMed ID: 19336336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems.
    Chen M; Wu QX; Cui RX
    ISA Trans; 2013 Mar; 52(2):198-206. PubMed ID: 23127620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive control for spacecraft rendezvous subject to actuator faults and saturations.
    Xia K; Huo W
    ISA Trans; 2018 Sep; 80():176-186. PubMed ID: 30119897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotation matrix based finite-time attitude synchronization control for spacecraft with external disturbances.
    Huang B; Li AJ; Guo Y; Wang CQ
    ISA Trans; 2019 Feb; 85():141-150. PubMed ID: 30392724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-Time Attitude Stabilization Adaptive Control for Spacecraft with Actuator Dynamics.
    Wang C; Ye D; Mu Z; Sun Z; Wu S
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31888307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures.
    Jiang Y; Hu Q; Ma G
    ISA Trans; 2010 Jan; 49(1):57-69. PubMed ID: 19747677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural network disturbance observer-based distributed finite-time formation tracking control for multiple unmanned helicopters.
    Wang D; Zong Q; Tian B; Shao S; Zhang X; Zhao X
    ISA Trans; 2018 Feb; 73():208-226. PubMed ID: 29310865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method.
    Zhang H; Cui L; Zhang X; Luo Y
    IEEE Trans Neural Netw; 2011 Dec; 22(12):2226-36. PubMed ID: 21997259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attitude-orbit coupled sliding mode tracking control for spacecraft formation with event-triggered transmission.
    Fan R; Chen X; Liu M; Cao X
    ISA Trans; 2022 May; 124():338-348. PubMed ID: 33243449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with input saturation.
    Xia K; Huo W
    ISA Trans; 2016 May; 62():249-57. PubMed ID: 26892402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.