BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 2126664)

  • 1. Changes in regional cerebral blood flow after hyperventilation in the pig with an induced focal cerebral contusion.
    Madsen FF
    Acta Neurochir (Wien); 1990; 106(3-4):164-9. PubMed ID: 2126664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional cerebral blood flow after a localized cerebral contusion in pigs.
    Madsen FF
    Acta Neurochir (Wien); 1990; 105(3-4):150-7. PubMed ID: 2125804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain tissue pO2 in relation to cerebral perfusion pressure, TCD findings and TCD-CO2-reactivity after severe head injury.
    Dings J; Meixensberger J; Amschler J; Hamelbeck B; Roosen K
    Acta Neurochir (Wien); 1996; 138(4):425-34. PubMed ID: 8738393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of transient moderate hyperventilation on dynamic cerebral autoregulation after severe head injury.
    Newell DW; Weber JP; Watson R; Aaslid R; Winn HR
    Neurosurgery; 1996 Jul; 39(1):35-43; discussion 43-4. PubMed ID: 8805138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional cerebral blood flow in the pig after a localized cerebral contusion treated with barbiturates.
    Madsen FF
    Acta Neurochir (Wien); 1990; 106(1-2):24-31. PubMed ID: 2270784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional cerebrovascular and metabolic effects of hyperventilation after severe traumatic brain injury.
    Diringer MN; Videen TO; Yundt K; Zazulia AR; Aiyagari V; Dacey RG; Grubb RL; Powers WJ
    J Neurosurg; 2002 Jan; 96(1):103-8. PubMed ID: 11794590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral blood flow and carbon dioxide reactivity in children with bacterial meningitis.
    Ashwal S; Stringer W; Tomasi L; Schneider S; Thompson J; Perkin R
    J Pediatr; 1990 Oct; 117(4):523-30. PubMed ID: 2120412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arterio-jugular differences of oxygen (AVDO2) for bedside assessment of CO2-reactivity and autoregulation in the acute phase of severe head injury.
    Sahuquillo J; Poca MA; Ausina A; Báguena M; Gracia RM; Rubio E
    Acta Neurochir (Wien); 1996; 138(4):435-44. PubMed ID: 8738394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury.
    Rosenthal G; Hemphill JC; Sorani M; Martin C; Morabito D; Obrist WD; Manley GT
    Crit Care Med; 2008 Jun; 36(6):1917-24. PubMed ID: 18496376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury.
    Rosenthal G; Sanchez-Mejia RO; Phan N; Hemphill JC; Martin C; Manley GT
    J Neurosurg; 2011 Jan; 114(1):62-70. PubMed ID: 20707619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of ketanserin on cerebral blood flow and cerebrovascular CO2 reactivity in healthy volunteers.
    Olsen KS; Videbaek C; Schmidt JF; Paulson OB
    Acta Neurochir (Wien); 1992; 119(1-4):7-11. PubMed ID: 1481756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional cerebral blood flow trends in head injured patients with focal contusions and cerebral edema.
    Alexander MJ; Martin NA; Khanna R; Caron M; Becker DP
    Acta Neurochir Suppl (Wien); 1994; 60():479-81. PubMed ID: 7976625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebrovascular response to acute hypocapnic and eucapnic hypoxia in normal man.
    Shapiro W; Wasserman AJ; Baker JP; Patterson JL
    J Clin Invest; 1970 Dec; 49(12):2362-8. PubMed ID: 5480859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain tissue oxygen tension and its response to physiological manipulations: influence of distance from injury site in a swine model of traumatic brain injury.
    Hawryluk GW; Phan N; Ferguson AR; Morabito D; Derugin N; Stewart CL; Knudson MM; Manley G; Rosenthal G
    J Neurosurg; 2016 Nov; 125(5):1217-1228. PubMed ID: 26848909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of hypocapnia, hypoxia, brain blood flow, and brain electrical activity in voluntary hyperventilation in humans.
    Burykh EA
    Neurosci Behav Physiol; 2008 Sep; 38(7):647-59. PubMed ID: 18709467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between jugular bulb oxygen saturation and partial pressure of brain tissue oxygen during CO2 and O2 reactivity tests in severely head-injured patients.
    Fandino J; Stocker R; Prokop S; Imhof HG
    Acta Neurochir (Wien); 1999; 141(8):825-34. PubMed ID: 10536718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperoxia and the cerebral hemodynamic responses to moderate hyperventilation.
    Johnston AJ; Steiner LA; Balestreri M; Gupta AK; Menon DK
    Acta Anaesthesiol Scand; 2003 Apr; 47(4):391-6. PubMed ID: 12694135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central and regional blood flow during hyperventilation. An experimental study in the pig.
    Karlsson T; Stjernström EL; Stjernström H; Norlén K; Wiklund L
    Acta Anaesthesiol Scand; 1994 Feb; 38(2):180-6. PubMed ID: 8171955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of regional cerebral blood flow during and between migraine attacks.
    Lauritzen M; Olsen TS; Lassen NA; Paulson OB
    Ann Neurol; 1983 Nov; 14(5):569-72. PubMed ID: 6418059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Changes in regional cerebral circulation in brain edema and the therapeutic influence of hyperventilation].
    Reulen HJ
    Z Prakt Anasth; 1971 Dec; 6(6):426-30. PubMed ID: 4259140
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.