These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 21267078)

  • 21. Morphology of feedback neurons in the mushroom body of the honeybee, Apis mellifera.
    Grünewald B
    J Comp Neurol; 1999 Feb; 404(1):114-26. PubMed ID: 9886029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional feedback from mushroom bodies to antennal lobes in the Drosophila olfactory pathway.
    Hu A; Zhang W; Wang Z
    Proc Natl Acad Sci U S A; 2010 Jun; 107(22):10262-7. PubMed ID: 20479249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of antennal lobe and mushroom body neuropils during metamorphosis in the honeybee, apis mellifera.
    Schröter U; Malun D
    J Comp Neurol; 2000 Jun; 422(2):229-45. PubMed ID: 10842229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mushroom body volumes and visual interneurons in ants: comparison between sexes and castes.
    Ehmer B; Gronenberg W
    J Comp Neurol; 2004 Feb; 469(2):198-213. PubMed ID: 14694534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multisensory convergence in the mushroom bodies of ants and bees.
    Gronenberg W; López-Riquelme GO
    Acta Biol Hung; 2004; 55(1-4):31-7. PubMed ID: 15270216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunocytochemical mapping of an RDL-like GABA receptor subunit and of GABA in brain structures related to learning and memory in the cricket Acheta domesticus.
    Strambi C; Cayre M; Sattelle DB; Augier R; Charpin P; Strambi A
    Learn Mem; 1998; 5(1-2):78-89. PubMed ID: 10454373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Representation of the calyces in the medial and vertical lobes of cockroach mushroom bodies.
    Strausfeld NJ; Li Y
    J Comp Neurol; 1999 Jul; 409(4):626-46. PubMed ID: 10376744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new ascending sensory tract to the calyces of the honeybee mushroom body, the subesophageal-calycal tract.
    Schröter U; Menzel R
    J Comp Neurol; 2003 Oct; 465(2):168-78. PubMed ID: 12949779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Age- and behaviour-related changes in the expression of biogenic amine receptor genes in the antennae of honey bees (Apis mellifera).
    McQuillan HJ; Barron AB; Mercer AR
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Oct; 198(10):753-61. PubMed ID: 22930400
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antennal lobe neurons of the honey bee, Apis mellifera, express a D2-like dopamine receptor in vitro.
    Kirchhof BS; Mercer AR
    J Comp Neurol; 1997 Jun; 383(2):189-98. PubMed ID: 9182848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modality-specific segregation of input to ant mushroom bodies.
    Gronenberg W
    Brain Behav Evol; 1999 Aug; 54(2):85-95. PubMed ID: 10529521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tyramine 1 Receptor Distribution in the Brain of Corbiculate Bees Points to a Conserved Function.
    Thamm M; Wagler K; Brockmann A; Scheiner R
    Brain Behav Evol; 2021; 96(1):13-25. PubMed ID: 34265763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of dopamine-immunoreactive neurons associated with the antennal lobes of the honey bee, Apis mellifera.
    Kirchhof BS; Homberg U; Mercer AR
    J Comp Neurol; 1999 Sep; 411(4):643-53. PubMed ID: 10421873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple mushroom body in an African scarabid beetle.
    Larsson MC; Hansson BS; Strausfeld NJ
    J Comp Neurol; 2004 Oct; 478(3):219-32. PubMed ID: 15368535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Octopamine-immunoreactive neurons in the brain and subesophageal ganglion of the hawkmoth Manduca sexta.
    Dacks AM; Christensen TA; Agricola HJ; Wollweber L; Hildebrand JG
    J Comp Neurol; 2005 Aug; 488(3):255-68. PubMed ID: 15952164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain.
    Grohmann L; Blenau W; Erber J; Ebert PR; Strünker T; Baumann A
    J Neurochem; 2003 Aug; 86(3):725-35. PubMed ID: 12859685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuronal distribution of tyramine and the tyramine receptor AmTAR1 in the honeybee brain.
    Thamm M; Scholl C; Reim T; Grübel K; Möller K; Rössler W; Scheiner R
    J Comp Neurol; 2017 Aug; 525(12):2615-2631. PubMed ID: 28445613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mushroom bodies of the honeybee brain show cell population-specific plasticity in expression of amine-receptor genes.
    McQuillan HJ; Nakagawa S; Mercer AR
    Learn Mem; 2012 Mar; 19(4):151-8. PubMed ID: 22411422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Octopamine-like immunoreactivity in the brain and subesophageal ganglion of the honeybee.
    Kreissl S; Eichmüller S; Bicker G; Rapus J; Eckert M
    J Comp Neurol; 1994 Oct; 348(4):583-95. PubMed ID: 7530730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GABAergic synaptic connections in mushroom bodies of insect brains.
    Schürmann FW; Frambach I; Elekes K
    Acta Biol Hung; 2008; 59 Suppl():173-81. PubMed ID: 18652390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.