These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21267087)

  • 41. Optical torque on microscopic objects.
    Parkin S; Knöner G; Singer W; Nieminen TA; Heckenberg NR; Rubinsztein-Dunlop H
    Methods Cell Biol; 2007; 82():525-61. PubMed ID: 17586271
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Static and dynamic behavior of two optically bound microparticles in a standing wave.
    Brzobohatý O; Karásek V; Šiler M; Trojek J; Zemánek P
    Opt Express; 2011 Sep; 19(20):19613-26. PubMed ID: 21996903
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic formation of optically trapped microstructure arrays for biosensor applications.
    Daria VR; Rodrigo PJ; Glückstad J
    Biosens Bioelectron; 2004 Jun; 19(11):1439-44. PubMed ID: 15093215
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mass-manufacturable polymer microfluidic device for dual fiber optical trapping.
    De Coster D; Ottevaere H; Vervaeke M; Van Erps J; Callewaert M; Wuytens P; Simpson SH; Hanna S; De Malsche W; Thienpont H
    Opt Express; 2015 Nov; 23(24):30991-1009. PubMed ID: 26698730
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optical levitation particle delivery system for a dual beam fiber optic trap.
    Gauthier RC; Frangioudakis A
    Appl Opt; 2000 Jan; 39(1):26-33. PubMed ID: 18337866
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of the geometry of negative dielectrophoresis traps for particle immobilization in digital microfluidic platforms.
    Nejad HR; Chowdhury OZ; Buat MD; Hoorfar M
    Lab Chip; 2013 May; 13(9):1823-30. PubMed ID: 23511544
    [TBL] [Abstract][Full Text] [Related]  

  • 47. First-order nonconservative motion of optically trapped nonspherical particles.
    Simpson SH; Hanna S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031141. PubMed ID: 21230059
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives.
    Urban AS; Carretero-Palacios S; Lutich AA; Lohmüller T; Feldmann J; Jäckel F
    Nanoscale; 2014 May; 6(9):4458-74. PubMed ID: 24664273
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber.
    Rong Q; Zhou Y; Yin X; Shao Z; Qiao X
    Biomed Opt Express; 2017 Sep; 8(9):4096-4107. PubMed ID: 28966849
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Selective particle trapping and optical binding in the evanescent field of an optical nanofiber.
    Frawley MC; Gusachenko I; Truong VG; Sergides M; Chormaic SN
    Opt Express; 2014 Jun; 22(13):16322-34. PubMed ID: 24977883
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Subwavelength optical trapping with a fiber-based surface plasmonic lens.
    Liu Y; Stief F; Yu M
    Opt Lett; 2013 Mar; 38(5):721-3. PubMed ID: 23455277
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.
    Saleh AA; Sheikhoelislami S; Gastelum S; Dionne JA
    Opt Express; 2016 Sep; 24(18):20593-603. PubMed ID: 27607663
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optical trapping-Raman spectroscopy (OT-RS) with embedded microscopy imaging for concurrent characterization and monitoring of physical and chemical properties of single particles.
    Gong Z; Pan YL; Videen G; Wang C
    Anal Chim Acta; 2018 Aug; 1020():86-94. PubMed ID: 29655431
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid computational cell-rotation around arbitrary axes in 3D with multi-core fiber.
    Sun J; Koukourakis N; Guck J; Czarske JW
    Biomed Opt Express; 2021 Jun; 12(6):3423-3437. PubMed ID: 34221669
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Towards an integrated optical single aerosol particle lab.
    Horstmann M; Probst K; Fallnich C
    Lab Chip; 2012 Jan; 12(2):295-301. PubMed ID: 22105700
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Visualization of optical binding of microparticles using a femtosecond fiber optical trap.
    Metzger NK; Wright EM; Sibbett W; Dholakia K
    Opt Express; 2006 Apr; 14(8):3677-87. PubMed ID: 19516514
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determining the 3D orientation of optically trapped upconverting nanorods by in situ single-particle polarized spectroscopy.
    Rodríguez-Sevilla P; Labrador-Páez L; Wawrzyńczyk D; Nyk M; Samoć M; Kar AK; Mackenzie MD; Paterson L; Jaque D; Haro-González P
    Nanoscale; 2016 Jan; 8(1):300-8. PubMed ID: 26607763
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Three-dimensional optical trapping and orientation of microparticles for coherent X-ray diffraction imaging.
    Gao Y; Harder R; Southworth SH; Guest JR; Huang X; Yan Z; Ocola LE; Yifat Y; Sule N; Ho PJ; Pelton M; Scherer NF; Young L
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4018-4024. PubMed ID: 30765527
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Giant optical manipulation.
    Shvedov VG; Rode AV; Izdebskaya YV; Desyatnikov AS; Krolikowski W; Kivshar YS
    Phys Rev Lett; 2010 Sep; 105(11):118103. PubMed ID: 20867612
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers.
    Xu S; Li Y; Lou L
    Appl Opt; 2005 May; 44(13):2667-72. PubMed ID: 15881076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.