These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21267091)

  • 1. Optofluidic in situ maskless lithography of charge selective nanoporous hydrogel for DNA preconcentration.
    Kim H; Kim J; Kim EG; Heinz AJ; Kwon S; Chun H
    Biomicrofluidics; 2010 Dec; 4(4):43014. PubMed ID: 21267091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High yield sample preconcentration using a highly ion-conductive charge-selective polymer.
    Chun H; Chung TD; Ramsey JM
    Anal Chem; 2010 Jul; 82(14):6287-92. PubMed ID: 20575520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optofluidic encapsulation and manipulation of silicon microchips using image processing based optofluidic maskless lithography and railed microfluidics.
    Chung SE; Lee SA; Kim J; Kwon S
    Lab Chip; 2009 Oct; 9(19):2845-50. PubMed ID: 19967123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography.
    Lee SA; Chung SE; Park W; Lee SH; Kwon S
    Lab Chip; 2009 Jun; 9(12):1670-5. PubMed ID: 19495448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a low flow-resistive charged nanoporous membrane in a microchip for fast electropreconcentration.
    Chun H
    Electrophoresis; 2018 Sep; 39(17):2181-2187. PubMed ID: 29896779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation-selective electropreconcentration.
    Shin IH; Kim KJ; Kim J; Kim HC; Chun H
    Lab Chip; 2014 Jun; 14(11):1811-5. PubMed ID: 24733115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Functional Biomaterial Microstructures by in Situ Photopolymerization and Photodegradation.
    LeValley PJ; Noren B; Kharkar PM; Kloxin AM; Gatlin JC; Oakey JS
    ACS Biomater Sci Eng; 2018 Aug; 4(8):3078-3087. PubMed ID: 31984222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication.
    Song SH; Kim K; Choi SE; Han S; Lee HS; Kwon S; Park W
    Opt Lett; 2014 Sep; 39(17):5162-5. PubMed ID: 25166099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic dialysis using photo-patterned hydrogel membranes in PDMS chips.
    Nguyen HT; Massino M; Keita C; Salmon JB
    Lab Chip; 2020 Jun; 20(13):2383-2393. PubMed ID: 32510526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Micro-Optics Elements with Arbitrary Surface Profiles Based on One-Step Maskless Grayscale Lithography.
    Deng Q; Yang Y; Gao H; Zhou Y; He Y; Hu S
    Micromachines (Basel); 2017 Oct; 8(10):. PubMed ID: 30400504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymeric lithography editor: Editing lithographic errors with nanoporous polymeric probes.
    Rajasekaran PR; Zhou C; Dasari M; Voss KO; Trautmann C; Kohli P
    Sci Adv; 2017 Jun; 3(6):e1602071. PubMed ID: 28630898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SYNTHESIS AND IN VITRO CHARACTERIZATION OF HYDROXYPROPYL METHYLCELLULOSE-GRAFT-POLY (ACRYLIC ACID/2-ACRYLAMIDO-2-METHYL-1-PROPANESULFONIC ACID) POLYMERIC NETWORK FOR CONTROLLED RELEASE OF CAPTOPRIL.
    Furqan Muhammad I; Mahmood A; Aysha R
    Acta Pol Pharm; 2016; 73(1):183-96. PubMed ID: 27008813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [In situ photopolymerization of polyacrylamide-based preconcentrator on a microfluidic chip for capillary electrophoresis].
    Yamamoto S
    Yakugaku Zasshi; 2012; 132(9):1031-5. PubMed ID: 23023420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-line microchip electrophoresis-mediated preconcentration of cationic compounds utilizing cationic polyacrylamide gels fabricated by in situ photopolymerization.
    Yamamoto S; Okada F; Kinoshita M; Suzuki S
    Analyst; 2018 Sep; 143(18):4429-4435. PubMed ID: 30151536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro differentiation of chondrogenic ATDC5 cells is enhanced by culturing on synthetic hydrogels with various charge densities.
    Kwon HJ; Yasuda K; Ohmiya Y; Honma K; Chen YM; Gong JP
    Acta Biomater; 2010 Feb; 6(2):494-501. PubMed ID: 19651251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A lithography-free procedure for fabricating three-dimensional microchannels using hydrogel molds.
    Hirama H; Odera T; Torii T; Moriguchi H
    Biomed Microdevices; 2012 Aug; 14(4):689-97. PubMed ID: 22450656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive optofluidic enzyme-linked immunosorbent assay by on-chip integrated polymer whispering-gallery-mode microlaser sensors.
    Ouyang X; Liu T; Zhang Y; He J; He Z; Zhang AP; Tam HY
    Lab Chip; 2020 Jul; 20(14):2438-2446. PubMed ID: 32484485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of membrane ion-permselectivity on electrokinetic concentration enrichment in membrane-based preconcentration units.
    Hlushkou D; Dhopeshwarkar R; Crooks RM; Tallarek U
    Lab Chip; 2008 Jul; 8(7):1153-62. PubMed ID: 18584092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-spherical particle generation from 4D optofluidic fabrication.
    Paulsen KS; Chung AJ
    Lab Chip; 2016 Aug; 16(16):2987-95. PubMed ID: 27092661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous Selective Preconcentration Leveraged by Ion Exchange and Imbibition through Nanoporous Medium.
    Lee D; Lee JA; Lee H; Kim SJ
    Sci Rep; 2019 Feb; 9(1):2336. PubMed ID: 30787314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.