These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 21267668)

  • 1. Genes and regulatory networks involved in persistence of Mycobacterium tuberculosis.
    Wang X; Wang H; Xie J
    Sci China Life Sci; 2011 Apr; 54(4):300-10. PubMed ID: 21267668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets.
    Mukhopadhyay S; Nair S; Ghosh S
    FEMS Microbiol Rev; 2012 Mar; 36(2):463-85. PubMed ID: 22092372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is adipose tissue a place for Mycobacterium tuberculosis persistence?
    Neyrolles O; Hernández-Pando R; Pietri-Rouxel F; Fornès P; Tailleux L; Barrios Payán JA; Pivert E; Bordat Y; Aguilar D; Prévost MC; Petit C; Gicquel B
    PLoS One; 2006 Dec; 1(1):e43. PubMed ID: 17183672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis.
    Anishetty S; Pulimi M; Pennathur G
    Comput Biol Chem; 2005 Oct; 29(5):368-78. PubMed ID: 16213791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction topology of Mycobacterium tuberculosis genes response to capreomycin and novel clues for more drug targets.
    Zheng F; Xie J
    J Cell Biochem; 2011 Oct; 112(10):2716-20. PubMed ID: 21678479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycobacterium tuberculosis evolutionary pathogenesis and its putative impact on drug development.
    Le Chevalier F; Cascioferro A; Majlessi L; Herrmann JL; Brosch R
    Future Microbiol; 2014; 9(8):969-85. PubMed ID: 25302954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis.
    Sacchettini JC; Rubin EJ; Freundlich JS
    Nat Rev Microbiol; 2008 Jan; 6(1):41-52. PubMed ID: 18079742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycobacterium sulfur metabolism and implications for novel drug targets.
    Zeng L; Shi T; Zhao Q; Xie J
    Cell Biochem Biophys; 2013 Mar; 65(2):77-83. PubMed ID: 23054909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of Mycobacterium tuberculosis with the host: consequences for vaccine development.
    Dietrich J; Doherty TM
    APMIS; 2009 May; 117(5-6):440-57. PubMed ID: 19400867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Latent tuberculosis: models, mechanisms, and novel prospects for eradication.
    Riska PF; Carleton S
    Semin Pediatr Infect Dis; 2002 Oct; 13(4):263-72. PubMed ID: 12491232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection.
    Marimani M; Ahmad A; Duse A
    Tuberculosis (Edinb); 2018 Dec; 113():200-214. PubMed ID: 30514504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel proteasome inhibitors as potential drugs to combat tuberculosis.
    Cheng Y; Pieters J
    J Mol Cell Biol; 2010 Aug; 2(4):173-5. PubMed ID: 20123700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered expression of isoniazid-regulated genes in drug-treated dormant Mycobacterium tuberculosis.
    Karakousis PC; Williams EP; Bishai WR
    J Antimicrob Chemother; 2008 Feb; 61(2):323-31. PubMed ID: 18156607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathogenicity in the tubercle bacillus: molecular and evolutionary determinants.
    Gordon SV; Bottai D; Simeone R; Stinear TP; Brosch R
    Bioessays; 2009 Apr; 31(4):378-88. PubMed ID: 19274661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular determinants of drug resistance in tuberculosis.
    Riska PF; Jacobs WR; Alland D
    Int J Tuberc Lung Dis; 2000 Feb; 4(2 Suppl 1):S4-10. PubMed ID: 10688142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of gene targets against dormant phase Mycobacterium tuberculosis infections.
    Murphy DJ; Brown JR
    BMC Infect Dis; 2007 Jul; 7():84. PubMed ID: 17655757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential impact of structural genomics on tuberculosis drug discovery.
    Arcus VL; Lott JS; Johnston JM; Baker EN
    Drug Discov Today; 2006 Jan; 11(1-2):28-34. PubMed ID: 16478688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Differential expression of human macrophage genes encoding cytokines and their regulatory elements after Mycobacterium tuberculosis infection].
    Xie J; Li Y; Yue J; Xu Y; Wang H; Liang L; Yu S; Hu C
    Wei Sheng Wu Xue Bao; 2003 Oct; 43(5):619-25. PubMed ID: 16281560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.