These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 21268027)

  • 21. Characterization of high-molecular-weight nonnative aggregates and aggregation kinetics by size exclusion chromatography with inline multi-angle laser light scattering.
    Li Y; Weiss WF; Roberts CJ
    J Pharm Sci; 2009 Nov; 98(11):3997-4016. PubMed ID: 19283773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formulation development of therapeutic monoclonal antibodies using high-throughput fluorescence and static light scattering techniques: role of conformational and colloidal stability.
    Goldberg DS; Bishop SM; Shah AU; Sathish HA
    J Pharm Sci; 2011 Apr; 100(4):1306-15. PubMed ID: 20960568
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aggregation Kinetics for IgG1-Based Monoclonal Antibody Therapeutics.
    Singla A; Bansal R; Joshi V; Rathore AS
    AAPS J; 2016 May; 18(3):689-702. PubMed ID: 26902302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High throughput formulation screening for global aggregation behaviors of three monoclonal antibodies.
    Li Y; Mach H; Blue JT
    J Pharm Sci; 2011 Jun; 100(6):2120-35. PubMed ID: 21491438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping the Aggregation Kinetics of a Therapeutic Antibody Fragment.
    Chakroun N; Hilton D; Ahmad SS; Platt GW; Dalby PA
    Mol Pharm; 2016 Feb; 13(2):307-19. PubMed ID: 26692229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of a folding model and in situ spectroscopic techniques for rational formulation development and stability testing of monoclonal antibody therapeutics.
    Rao G; Iyer V; Kosloski MP; Pisal DS; Shin E; Middaugh CR; Balu-Iyer SV
    J Pharm Sci; 2010 Apr; 99(4):1697-706. PubMed ID: 19798762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monoclonal Antibodies Follow Distinct Aggregation Pathways During Production-Relevant Acidic Incubation and Neutralization.
    Skamris T; Tian X; Thorolfsson M; Karkov HS; Rasmussen HB; Langkilde AE; Vestergaard B
    Pharm Res; 2016 Mar; 33(3):716-28. PubMed ID: 26563206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating the Degradation Behaviors of a Therapeutic Monoclonal Antibody Associated with pH and Buffer Species.
    Zheng S; Qiu D; Adams M; Li J; Mantri RV; Gandhi R
    AAPS PharmSciTech; 2017 Jan; 18(1):42-48. PubMed ID: 26340951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformational implications of an inversed pH-dependent antibody aggregation.
    Perico N; Purtell J; Dillon TM; Ricci MS
    J Pharm Sci; 2009 Sep; 98(9):3031-42. PubMed ID: 18803243
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics and Characterization of Non-enzymatic Fragmentation of Monoclonal Antibody Therapeutics.
    Ravuluri S; Bansal R; Chhabra N; Rathore AS
    Pharm Res; 2018 May; 35(7):142. PubMed ID: 29761239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational and Colloidal Stabilities of Isolated Constant Domains of Human Immunoglobulin G and Their Impact on Antibody Aggregation under Acidic Conditions.
    Yageta S; Lauer TM; Trout BL; Honda S
    Mol Pharm; 2015 May; 12(5):1443-55. PubMed ID: 25871775
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Protein Conformation, Apparent Solubility, and Protein-Protein Interactions on the Rates and Mechanisms of Aggregation for an IgG1Monoclonal Antibody.
    Kalonia C; Toprani V; Toth R; Wahome N; Gabel I; Middaugh CR; Volkin DB
    J Phys Chem B; 2016 Jul; 120(29):7062-75. PubMed ID: 27380437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Equilibrium studies of protein aggregates and homogeneous nucleation in protein formulation.
    Kiese S; Pappenberger A; Friess W; Mahler HC
    J Pharm Sci; 2010 Feb; 99(2):632-44. PubMed ID: 19548315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of IgG1 aggregation in solution.
    Ojala F; Degerman M; Hansen TB; Broberg Hansen E; Nilsson B
    Biotechnol J; 2014 Jun; 9(6):800-4. PubMed ID: 24760776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Opalescence in monoclonal antibody solutions and its correlation with intermolecular interactions in dilute and concentrated solutions.
    Raut AS; Kalonia DS
    J Pharm Sci; 2015 Apr; 104(4):1263-74. PubMed ID: 25556561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental Model System to Study pH Shift-Induced Aggregation of Monoclonal Antibodies Under Controlled Conditions.
    Oyetayo OO; Kiefer H
    Pharm Res; 2016 Jun; 33(6):1359-69. PubMed ID: 26928669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative effects of pH and ionic strength on protein-protein interactions, unfolding, and aggregation for IgG1 antibodies.
    Sahin E; Grillo AO; Perkins MD; Roberts CJ
    J Pharm Sci; 2010 Dec; 99(12):4830-48. PubMed ID: 20821389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature-ramped studies on the aggregation, unfolding, and interaction of a therapeutic monoclonal antibody.
    Menzen T; Friess W
    J Pharm Sci; 2014 Feb; 103(2):445-55. PubMed ID: 24382634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of temperature and osmolytes on competing degradation routes for an IgG1 antibody.
    Roberts CJ; Nesta DP; Kim N
    J Pharm Sci; 2013 Oct; 102(10):3556-66. PubMed ID: 23873602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitation of aggregate levels in a recombinant humanized monoclonal antibody formulation by size-exclusion chromatography, asymmetrical flow field flow fractionation, and sedimentation velocity.
    Gabrielson JP; Brader ML; Pekar AH; Mathis KB; Winter G; Carpenter JF; Randolph TW
    J Pharm Sci; 2007 Feb; 96(2):268-79. PubMed ID: 17080424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.