These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 21268154)
1. Structural and binding study of modified siRNAs with the Argonaute 2 PAZ domain by NMR spectroscopy. Maiti M; Nauwelaerts K; Lescrinier E; Herdewijn P Chemistry; 2011 Feb; 17(5):1519-28. PubMed ID: 21268154 [TBL] [Abstract][Full Text] [Related]
2. Contributions of 3'-overhang to the dissociation of small interfering RNAs from the PAZ domain: molecular dynamics simulation study. Lee HS; Lee SN; Joo CH; Lee H; Lee HS; Yoon SY; Kim YK; Choe H J Mol Graph Model; 2007 Mar; 25(6):784-93. PubMed ID: 16959510 [TBL] [Abstract][Full Text] [Related]
3. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Lingel A; Simon B; Izaurralde E; Sattler M Nature; 2003 Nov; 426(6965):465-9. PubMed ID: 14615801 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of nuclease-resistant siRNAs possessing universal overhangs. Ueno Y; Watanabe Y; Shibata A; Yoshikawa K; Takano T; Kohara M; Kitade Y Bioorg Med Chem; 2009 Mar; 17(5):1974-81. PubMed ID: 19200743 [TBL] [Abstract][Full Text] [Related]
5. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Song JJ; Liu J; Tolia NH; Schneiderman J; Smith SK; Martienssen RA; Hannon GJ; Joshua-Tor L Nat Struct Biol; 2003 Dec; 10(12):1026-32. PubMed ID: 14625589 [TBL] [Abstract][Full Text] [Related]
6. Nucleic acid 3'-end recognition by the Argonaute2 PAZ domain. Lingel A; Simon B; Izaurralde E; Sattler M Nat Struct Mol Biol; 2004 Jun; 11(6):576-7. PubMed ID: 15156196 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and properties of modified siRNA having amide-linked oligoribonucleosides at their 3' overhang regions. Iwase R; Miyao H; Toyama T; Nishimori K Nucleic Acids Symp Ser (Oxf); 2006; (50):175-6. PubMed ID: 17150874 [TBL] [Abstract][Full Text] [Related]
8. Short interfering RNA strand selection is independent of dsRNA processing polarity during RNAi in Drosophila. Preall JB; He Z; Gorra JM; Sontheimer EJ Curr Biol; 2006 Mar; 16(5):530-5. PubMed ID: 16527750 [TBL] [Abstract][Full Text] [Related]
9. Re-Engineering RNA Molecules into Therapeutic Agents. Egli M; Manoharan M Acc Chem Res; 2019 Apr; 52(4):1036-1047. PubMed ID: 30912917 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of modified double stranded RNAs containing duplex regions between amide-linked RNA and RNA at both ends and enhanced nuclease resistance. Iwase R; Kurokawa R; Ueno J Nucleic Acids Symp Ser (Oxf); 2009; (53):119-20. PubMed ID: 19749289 [TBL] [Abstract][Full Text] [Related]
11. Gene silencing activity of siRNAs with a ribo-difluorotoluyl nucleotide. Xia J; Noronha A; Toudjarska I; Li F; Akinc A; Braich R; Frank-Kamenetsky M; Rajeev KG; Egli M; Manoharan M ACS Chem Biol; 2006 Apr; 1(3):176-83. PubMed ID: 17163665 [TBL] [Abstract][Full Text] [Related]
12. Structural characterization and biological evaluation of small interfering RNAs containing cyclohexenyl nucleosides. Nauwelaerts K; Fisher M; Froeyen M; Lescrinier E; Aerschot AV; Xu D; DeLong R; Kang H; Juliano RL; Herdewijn P J Am Chem Soc; 2007 Aug; 129(30):9340-8. PubMed ID: 17616127 [TBL] [Abstract][Full Text] [Related]
13. The C-terminal dsRNA-binding domain of Kandasamy SK; Zhu L; Fukunaga R RNA; 2017 Jul; 23(7):1139-1153. PubMed ID: 28416567 [No Abstract] [Full Text] [Related]
14. Synthesis, gene silencing, and molecular modeling studies of 4'-C-aminomethyl-2'-O-methyl modified small interfering RNAs. Gore KR; Nawale GN; Harikrishna S; Chittoor VG; Pandey SK; Höbartner C; Patankar S; Pradeepkumar PI J Org Chem; 2012 Apr; 77(7):3233-45. PubMed ID: 22372696 [TBL] [Abstract][Full Text] [Related]
15. Chimeric siRNAs with chemically modified pentofuranose and hexopyranose nucleotides: altritol-nucleotide (ANA) containing GalNAc-siRNA conjugates: in vitro and in vivo RNAi activity and resistance to 5'-exonuclease. Kumar P; Degaonkar R; Guenther DC; Abramov M; Schepers G; Capobianco M; Jiang Y; Harp J; Kaittanis C; Janas MM; Castoreno A; Zlatev I; Schlegel MK; Herdewijn P; Egli M; Manoharan M Nucleic Acids Res; 2020 May; 48(8):4028-4040. PubMed ID: 32170309 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of MDR1 expression with altritol-modified siRNAs. Fisher M; Abramov M; Van Aerschot A; Xu D; Juliano RL; Herdewijn P Nucleic Acids Res; 2007; 35(4):1064-74. PubMed ID: 17264131 [TBL] [Abstract][Full Text] [Related]
17. Roles of R2D2, a cytoplasmic D2 body component, in the endogenous siRNA pathway in Drosophila. Nishida KM; Miyoshi K; Ogino A; Miyoshi T; Siomi H; Siomi MC Mol Cell; 2013 Feb; 49(4):680-91. PubMed ID: 23375501 [TBL] [Abstract][Full Text] [Related]
18. Modified siRNAs for the study of the PAZ domain. Somoza A; Terrazas M; Eritja R Chem Commun (Camb); 2010 Jun; 46(24):4270-2. PubMed ID: 20485810 [TBL] [Abstract][Full Text] [Related]
19. How to Computationally Stack the Deck for Hit-to-Lead Generation: In Silico Molecular Interaction Energy Profiling for de Novo siRNA Guide Strand Surrogate Selection. Greenidge PA; Blommers MJJ; Priestle JP; Hunziker J J Chem Inf Model; 2019 May; 59(5):1897-1908. PubMed ID: 31021613 [TBL] [Abstract][Full Text] [Related]
20. Effect of Sugar 2',4'-Modifications on Gene Silencing Activity of siRNA Duplexes. Malek-Adamian E; Fakhoury J; Arnold AE; MartÃnez-Montero S; Shoichet MS; Damha MJ Nucleic Acid Ther; 2019 Aug; 29(4):187-194. PubMed ID: 31084536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]