These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 21268165)
1. Modeling the cis-oxo-labile binding site motif of non-heme iron oxygenases: water exchange and oxidation reactivity of a non-heme iron(IV)-oxo compound bearing a tripodal tetradentate ligand. Company A; Prat I; Frisch JR; Mas-Ballesté R; Güell M; Juhász G; Ribas X; Münck E; Luis JM; Que L; Costas M Chemistry; 2011 Feb; 17(5):1622-34. PubMed ID: 21268165 [TBL] [Abstract][Full Text] [Related]
2. Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height. de Visser SP J Am Chem Soc; 2010 Jan; 132(3):1087-97. PubMed ID: 20041691 [TBL] [Abstract][Full Text] [Related]
3. Theoretical study of the water oxidation mechanism with non-heme Fe(Pytacn) iron complexes. Evidence that the Fe(IV)(O)(Pytacn) species cannot react with the water molecule to form the O-O bond. Acuña-Parés F; Costas M; Luis JM; Lloret-Fillol J Inorg Chem; 2014 Jun; 53(11):5474-85. PubMed ID: 24816178 [TBL] [Abstract][Full Text] [Related]
4. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species. Chen K; Que L J Am Chem Soc; 2001 Jul; 123(26):6327-37. PubMed ID: 11427057 [TBL] [Abstract][Full Text] [Related]
5. The mechanism of stereospecific C-H oxidation by Fe(Pytacn) complexes: bioinspired non-heme iron catalysts containing cis-labile exchangeable sites. Prat I; Company A; Postils V; Ribas X; Que L; Luis JM; Costas M Chemistry; 2013 May; 19(21):6724-38. PubMed ID: 23536410 [TBL] [Abstract][Full Text] [Related]
6. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant. Jensen MP; Lange SJ; Mehn MP; Que EL; Que L J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539 [TBL] [Abstract][Full Text] [Related]
7. Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes. Nam W; Lee YM; Fukuzumi S Acc Chem Res; 2014 Apr; 47(4):1146-54. PubMed ID: 24524675 [TBL] [Abstract][Full Text] [Related]
8. DFT studies of the substituent effects of dimethylamino on non-heme active oxidizing species: iron(V)-oxo species or iron(IV)-oxo acetate aminopyridine cation radical species? Wang F; Sun W; Xia C; Wang Y J Biol Inorg Chem; 2017 Oct; 22(7):987-998. PubMed ID: 28667369 [TBL] [Abstract][Full Text] [Related]
9. A structural and Mössbauer study of complexes with Fe(2)(micro-O(H))(2) cores: stepwise oxidation from Fe(II)(micro-OH)(2)Fe(II) through Fe(II)(micro-OH)(2)Fe(III) to Fe(III)(micro-O)(micro-OH)Fe(III). Stubna A; Jo DH; Costas M; Brenessel WW; Andres H; Bominaar EL; Münck E; Que L Inorg Chem; 2004 May; 43(10):3067-79. PubMed ID: 15132612 [TBL] [Abstract][Full Text] [Related]
10. Axial ligand tuning of a nonheme iron(IV)-oxo unit for hydrogen atom abstraction. Sastri CV; Lee J; Oh K; Lee YJ; Lee J; Jackson TA; Ray K; Hirao H; Shin W; Halfen JA; Kim J; Que L; Shaik S; Nam W Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19181-6. PubMed ID: 18048327 [TBL] [Abstract][Full Text] [Related]
11. Unraveling the reactive species of a functional non-heme iron monooxygenase model using stopped-flow UV-vis spectroscopy. Rowe GT; Rybak-Akimova EV; Caradonna JP Inorg Chem; 2007 Dec; 46(25):10594-606. PubMed ID: 17988120 [TBL] [Abstract][Full Text] [Related]
12. Oxygen Atom Exchange between H2O and Non-Heme Oxoiron(IV) Complexes: Ligand Dependence and Mechanism. Puri M; Company A; Sabenya G; Costas M; Que L Inorg Chem; 2016 Jun; 55(12):5818-27. PubMed ID: 27275633 [TBL] [Abstract][Full Text] [Related]
13. Iron-catalyzed halogenation of alkanes: modeling of nonheme halogenases by experiment and DFT calculations. Comba P; Wunderlich S Chemistry; 2010 Jun; 16(24):7293-9. PubMed ID: 20458709 [TBL] [Abstract][Full Text] [Related]
14. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants. Oloo WN; Que L Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131 [TBL] [Abstract][Full Text] [Related]
15. Structural modeling of iron halogenases: synthesis and reactivity of halide-iron(IV)-oxo compounds. Planas O; Clémancey M; Latour JM; Company A; Costas M Chem Commun (Camb); 2014 Sep; 50(74):10887-90. PubMed ID: 25093575 [TBL] [Abstract][Full Text] [Related]
16. Does hydrogen-bonding donation to manganese(IV)-oxo and iron(IV)-oxo oxidants affect the oxygen-atom transfer ability? A computational study. Latifi R; Sainna MA; Rybak-Akimova EV; de Visser SP Chemistry; 2013 Mar; 19(12):4058-68. PubMed ID: 23362213 [TBL] [Abstract][Full Text] [Related]
17. Role of Fe(IV)-oxo intermediates in stoichiometric and catalytic oxidations mediated by iron pyridine-azamacrocycles. Ye W; Ho DM; Friedle S; Palluccio TD; Rybak-Akimova EV Inorg Chem; 2012 May; 51(9):5006-21. PubMed ID: 22534174 [TBL] [Abstract][Full Text] [Related]
18. Tetranuclear iron(III) complexes of an octadentate pyridine-carboxylate ligand and their catalytic activity in alkane oxidation by hydrogen peroxide. Gutkina EA; Trukhan VM; Pierpont CG; Mkoyan S; Strelets VV; Nordlander E; Shteinman AA Dalton Trans; 2006 Jan; (3):492-501. PubMed ID: 16395449 [TBL] [Abstract][Full Text] [Related]
19. Spin State Tunes Oxygen Atom Transfer towards Fe Castillo CE; Gamba I; Vicens L; Clémancey M; Latour JM; Costas M; Basallote MG Chemistry; 2021 Mar; 27(15):4946-4954. PubMed ID: 33350013 [TBL] [Abstract][Full Text] [Related]