These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 21268236)
1. Temporal progression of the host response to implanted poly(ethylene glycol)-based hydrogels. Lynn AD; Blakney AK; Kyriakides TR; Bryant SJ J Biomed Mater Res A; 2011 Mar; 96(4):621-31. PubMed ID: 21268236 [TBL] [Abstract][Full Text] [Related]
2. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. Blakney AK; Swartzlander MD; Bryant SJ J Biomed Mater Res A; 2012 Jun; 100(6):1375-86. PubMed ID: 22407522 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the in vitro macrophage response and in vivo host response to poly(ethylene glycol)-based hydrogels. Lynn AD; Kyriakides TR; Bryant SJ J Biomed Mater Res A; 2010 Jun; 93(3):941-53. PubMed ID: 19708075 [TBL] [Abstract][Full Text] [Related]
5. Linking the foreign body response and protein adsorption to PEG-based hydrogels using proteomics. Swartzlander MD; Barnes CA; Blakney AK; Kaar JL; Kyriakides TR; Bryant SJ Biomaterials; 2015 Feb; 41():26-36. PubMed ID: 25522962 [TBL] [Abstract][Full Text] [Related]
6. Mapping Macrophage Polarization and Origin during the Progression of the Foreign Body Response to a Poly(ethylene glycol) Hydrogel Implant. Saleh LS; Amer LD; Thompson BJ; Danhorn T; Knapp JR; Gibbings SL; Thomas S; Barthel L; O'Connor BP; Janssen WJ; Alper S; Bryant SJ Adv Healthc Mater; 2022 May; 11(9):e2102209. PubMed ID: 34967497 [TBL] [Abstract][Full Text] [Related]
7. The in vitro effects of macrophages on the osteogenic capabilities of MC3T3-E1 cells encapsulated in a biomimetic poly(ethylene glycol) hydrogel. Saleh LS; Carles-Carner M; Bryant SJ Acta Biomater; 2018 Apr; 71():37-48. PubMed ID: 29505890 [TBL] [Abstract][Full Text] [Related]
9. Zwitterionic PEG-PC Hydrogels Modulate the Foreign Body Response in a Modulus-Dependent Manner. Jansen LE; Amer LD; Chen EY; Nguyen TV; Saleh LS; Emrick T; Liu WF; Bryant SJ; Peyton SR Biomacromolecules; 2018 Jul; 19(7):2880-2888. PubMed ID: 29698603 [TBL] [Abstract][Full Text] [Related]
10. Phenotypic changes in bone marrow-derived murine macrophages cultured on PEG-based hydrogels activated or not by lipopolysaccharide. Lynn AD; Bryant SJ Acta Biomater; 2011 Jan; 7(1):123-32. PubMed ID: 20674808 [TBL] [Abstract][Full Text] [Related]
11. A self-cleaning, mechanically robust membrane for minimizing the foreign body reaction: towards extending the lifetime of sub-Q glucose biosensors. Means AK; Dong P; Clubb FJ; Friedemann MC; Colvin LE; Shrode CA; Coté GL; Grunlan MA J Mater Sci Mater Med; 2019 Jun; 30(7):79. PubMed ID: 31240399 [TBL] [Abstract][Full Text] [Related]
12. Immunomodulation by mesenchymal stem cells combats the foreign body response to cell-laden synthetic hydrogels. Swartzlander MD; Blakney AK; Amer LD; Hankenson KD; Kyriakides TR; Bryant SJ Biomaterials; 2015 Feb; 41():79-88. PubMed ID: 25522967 [TBL] [Abstract][Full Text] [Related]
13. In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels. Shin H; Quinten Ruhé P; Mikos AG; Jansen JA Biomaterials; 2003 Aug; 24(19):3201-11. PubMed ID: 12763447 [TBL] [Abstract][Full Text] [Related]
14. The impact of functional groups of poly(ethylene glycol) macromers on the physical properties of photo-polymerized hydrogels and the local inflammatory response in the host. Day JR; David A; Kim J; Farkash EA; Cascalho M; Milašinović N; Shikanov A Acta Biomater; 2018 Feb; 67():42-52. PubMed ID: 29242160 [TBL] [Abstract][Full Text] [Related]
15. Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects. García JR; Clark AY; García AJ J Biomed Mater Res A; 2016 Apr; 104(4):889-900. PubMed ID: 26662727 [TBL] [Abstract][Full Text] [Related]
16. The In Vitro and In Vivo Response to MMP-Sensitive Poly(Ethylene Glycol) Hydrogels. Amer LD; Bryant SJ Ann Biomed Eng; 2016 Jun; 44(6):1959-69. PubMed ID: 27080375 [TBL] [Abstract][Full Text] [Related]
17. Bijel-templated implantable biomaterials for enhancing tissue integration and vascularization. Thorson TJ; Gurlin RE; Botvinick EL; Mohraz A Acta Biomater; 2019 Aug; 94():173-182. PubMed ID: 31233892 [TBL] [Abstract][Full Text] [Related]
18. Probing cell-matrix interactions in RGD-decorated macroporous poly (ethylene glycol) hydrogels for 3D chondrocyte culture. Zhang J; Mujeeb A; Du Y; Lin J; Ge Z Biomed Mater; 2015 Jun; 10(3):035016. PubMed ID: 26107534 [TBL] [Abstract][Full Text] [Related]
19. Foreign body response to subcutaneous biomaterial implants in a mast cell-deficient Kit(w-Sh) murine model. Avula MN; Rao AN; McGill LD; Grainger DW; Solzbacher F Acta Biomater; 2014 May; 10(5):1856-63. PubMed ID: 24406200 [TBL] [Abstract][Full Text] [Related]
20. Development of a cell-free and growth factor-free hydrogel capable of inducing angiogenesis and innervation after subcutaneous implantation. Dos Santos BP; Garbay B; Fenelon M; Rosselin M; Garanger E; Lecommandoux S; Oliveira H; Amédée J Acta Biomater; 2019 Nov; 99():154-167. PubMed ID: 31425892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]