These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 21268359)

  • 41. Reduction of contractile performance in the myocardium from unilaterally nephrectomized rats.
    Vassallo DV; Vasquez EC; Cabral AM
    Braz J Med Biol Res; 1987; 20(5):627-9. PubMed ID: 3452456
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contractile function of papillary muscles with carbonic anhydrase inhibitors.
    Geers C; Gros G
    Life Sci; 1995; 57(6):591-7. PubMed ID: 7623626
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of ageing on the activation metabolism of rat papillary muscles.
    Kiriazis H; Gibbs CL
    Clin Exp Pharmacol Physiol; 2001 Mar; 28(3):176-83. PubMed ID: 11207672
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of amiodarone on the dynamics of mechanical restitution of rat papillary muscles.
    Ugdyzhekova DS; Afanas'ev SA; Lukavskaya IA
    Bull Exp Biol Med; 2003 Mar; 135(3):265-7. PubMed ID: 12802398
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phospholipase D produces increased contractile force in rabbit ventricular muscle.
    Langer GA; Rich TL
    Circ Res; 1985 Jan; 56(1):146-9. PubMed ID: 3967344
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Heat released during relaxation equals force-length area in isometric contractions of rabbit papillary muscle.
    Mast F; Elzinga G
    Circ Res; 1990 Oct; 67(4):893-901. PubMed ID: 2208612
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Effect of hypokinesia on the contractile function of the myocardium].
    Meerson FZ; Kapel'ko VI; Trikhpoeva AM; Gorina MS
    Kardiologiia; 1979 Feb; 19(2):71-6. PubMed ID: 423440
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Effect of temperature on the myocardial chrono- and inotropism of warm-blooded animals].
    Izakov VIa; Bykov BL; Rutkevich SM
    Fiziol Zh SSSR Im I M Sechenova; 1983 Sep; 69(9):1188-95. PubMed ID: 6641997
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adrenaline increases the rate of cycling of crossbridges in rat cardiac muscle as measured by pseudo-random binary noise-modulated perturbation analysis.
    Hoh JF; Rossmanith GH; Kwan LJ; Hamilton AM
    Circ Res; 1988 Mar; 62(3):452-61. PubMed ID: 3342474
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Age-related dynamics of the contractile function of the myocardium and its relation to cardiomyocyte size].
    Meerson FZ; Saulia AI
    Kardiologiia; 1984 Jan; 24(1):71-6. PubMed ID: 6700139
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acute inotropic response of rabbit papillary muscle to triiodothyronine.
    Snow TR; Deal MT; Connelly TS; Yokoyama Y; Novitzky D
    Cardiology; 1992; 80(2):112-7. PubMed ID: 1611629
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cardiotoxins from Cobra Naja oxiana Change the Force of Contraction and the Character of Rhythmoinotropic Phenomena in the Rat Myocardium.
    Averin AS; Astashev ME; Andreeva TV; Tsetlin VI; Utkin YN
    Dokl Biochem Biophys; 2019 Jul; 487(1):282-286. PubMed ID: 31559598
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effects of adrenaline on the work- and power-generating capacity of rat papillary muscle in vitro.
    Layland J; Young IS; Altringham JD
    J Exp Biol; 1997 Feb; 200(Pt 3):503-9. PubMed ID: 9057307
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanics of rat myocardium revisited: investigations of ultra-thin cardiac muscles under high energy demand.
    Gülch RW; Ebrecht G
    Basic Res Cardiol; 1987; 82 Suppl 2():263-74. PubMed ID: 3663020
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of subchronic lead intoxication of rats on the myocardium contractility.
    Protsenko YL; Katsnelson BA; Klinova SV; Lookin ON; Balakin AA; Nikitina LV; Gerzen OP; Minigalieva IA; Privalova LI; Gurvich VB; Sutunkova MP; Katsnelson LB
    Food Chem Toxicol; 2018 Oct; 120():378-389. PubMed ID: 30036551
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Modeling of steady-state and relaxation elastic properties of the papillary muscle at rest].
    Kobelev AV; Smoliuk LT; Lukin ON; Balakin AA; Protsenko IuL
    Biofizika; 2011; 56(3):534-42. PubMed ID: 21786708
    [TBL] [Abstract][Full Text] [Related]  

  • 57.
    Chaban R; Buschmann K; Ghazy A; Poplawski A; Wittmann N; Beiras-Fernandez A; Vahl CF
    J Nutr Sci; 2019; 8():e12. PubMed ID: 31019683
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [The role of energy substrates in regulation of the force-frequency relationship in the rat myocardium: effect of ambiocor].
    Nakipova OV; Averin AS; Zakharova NM; Uchitel' ML; Grishina EV; Bogdanova LA; Maevskiĭ EI
    Biofizika; 2010; 55(6):1124-31. PubMed ID: 21268359
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Effect of isoproterenol on contractility of the heart papillary muscles of a ground squirrel].
    Averin AS; Zakharova NM; Ignat'ev DA; Tarlachkov SV; Nakipova OV
    Biofizika; 2010; 55(5):910-7. PubMed ID: 21033361
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nitric oxide effects on myocardial function and force-interval relations: regulation of twitch duration.
    Prabhu SD; Azimi A; Frosto T
    J Mol Cell Cardiol; 1999 Dec; 31(12):2077-85. PubMed ID: 10640437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.