BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21268611)

  • 1. Interface architecture determined electrocatalytic activity of Pt on vertically oriented TiO(2) nanotubes.
    Rettew RE; Allam NK; Alamgir FM
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):147-51. PubMed ID: 21268611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoporous Pt@Au(x)Cu(100-x) by hydrogen evolution assisted electrodeposition of Au(x)Cu(100-x) and galvanic replacement of Cu with Pt: electrocatalytic properties.
    Cherevko S; Kulyk N; Chung CH
    Langmuir; 2012 Feb; 28(6):3306-15. PubMed ID: 22256895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High electrocatalytic activity of Pt-Pd binary spherocrystals chemically assembled in vertically aligned TiO2 nanotubes.
    Lei Y; Zhao G; Tong X; Liu M; Li D; Geng R
    Chemphyschem; 2010 Jan; 11(1):276-84. PubMed ID: 19924757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pt-Ru/CeO2/carbon nanotube nanocomposites: an efficient electrocatalyst for direct methanol fuel cells.
    Sun Z; Wang X; Liu Z; Zhang H; Yu P; Mao L
    Langmuir; 2010 Jul; 26(14):12383-9. PubMed ID: 20486650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic reactivity of surface platinized TiO2: substrate specificity and the effect of Pt oxidation state.
    Lee J; Choi W
    J Phys Chem B; 2005 Apr; 109(15):7399-406. PubMed ID: 16851847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and electronic effects of carbon-supported Pt(x)Pd(1-x) nanoparticles on the electrocatalytic activity of the oxygen-reduction reaction and on methanol tolerance.
    Chang SH; Su WN; Yeh MH; Pan CJ; Yu KL; Liu DG; Lee JF; Hwang BJ
    Chemistry; 2010 Sep; 16(36):11064-71. PubMed ID: 20690117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells.
    Mu Y; Liang H; Hu J; Jiang L; Wan L
    J Phys Chem B; 2005 Dec; 109(47):22212-6. PubMed ID: 16853891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of surface segregation on the methanol oxidation reaction in carbon-supported Pt-Ru alloy nanoparticles.
    Jeon TY; Lee KS; Yoo SJ; Cho YH; Kang SH; Sung YE
    Langmuir; 2010 Jun; 26(11):9123-9. PubMed ID: 20377220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity-structure correlation of Pt/Ru catalysts for the electrodecomposition of methanol: the importance of RuO(2) and PtRu alloying.
    Wei YC; Liu CW; Wang KW
    Chemphyschem; 2009 Jun; 10(8):1230-7. PubMed ID: 19396843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the formation mechanism and chemical states of carbon-supported Pt-Ru nanoparticles by in situ X-ray absorption spectroscopy.
    Hwang BJ; Chen CH; Sarma LS; Chen JM; Wang GR; Tang MT; Liu DG; Lee JF
    J Phys Chem B; 2006 Apr; 110(13):6475-82. PubMed ID: 16570944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of surface steps on Pt nanoparticles in electro-oxidation of carbon monoxide and methanol.
    Lee SW; Chen S; Sheng W; Yabuuchi N; Kim YT; Mitani T; Vescovo E; Shao-Horn Y
    J Am Chem Soc; 2009 Nov; 131(43):15669-77. PubMed ID: 19824642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin TiO(x) films on Pt(111): a LEED, XPS, and STM investigation.
    Sedona F; Rizzi GA; Agnoli S; Llabrés i Xamena FX; Papageorgiou A; Ostermann D; Sambi M; Finetti P; Schierbaum K; Granozzi G
    J Phys Chem B; 2005 Dec; 109(51):24411-26. PubMed ID: 16375442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocatalytic oxidation of ethylene glycol on Pt and Pt-Ru nanoparticles modified multi-walled carbon nanotubes.
    Selvaraj V; Vinoba M; Alagar M
    J Colloid Interface Sci; 2008 Jun; 322(2):537-44. PubMed ID: 18402968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of CO oxidation on high-concentration phases of atomic oxygen on Pt(111).
    Gerrard AL; Weaver JF
    J Chem Phys; 2005 Dec; 123(22):224703. PubMed ID: 16375491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution photoemission and x-ray absorption spectroscopy of a lepidocrocite-like TiO2 nanosheet on Pt(110) (1 × 2).
    Walle LE; Agnoli S; Svenum IH; Borg A; Artiglia L; Krüger P; Sandell A; Granozzi G
    J Chem Phys; 2011 Aug; 135(5):054706. PubMed ID: 21823725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability and chemisorption properties of ultrathin TiO(x)/Pt(111) films and Au/TiO(x)/Pt(111) model catalysts in reactive atmospheres.
    Artiglia L; Diemant T; Hartmann H; Bansmann J; Behm RJ; Gavioli L; Cavaliere E; Granozzi G
    Phys Chem Chem Phys; 2010 Jul; 12(25):6864-74. PubMed ID: 20461242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening by kinetic Monte Carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen.
    Kieken LD; Neurock M; Mei D
    J Phys Chem B; 2005 Feb; 109(6):2234-44. PubMed ID: 16851216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic-resolution imaging of size-selected platinum clusters on TiO(2)(110) surfaces.
    Isomura N; Wu X; Watanabe Y
    J Chem Phys; 2009 Oct; 131(16):164707. PubMed ID: 19894970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells.
    Hsin YL; Hwang KC; Yeh CT
    J Am Chem Soc; 2007 Aug; 129(32):9999-10010. PubMed ID: 17658804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platinum/Carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells.
    Lin Y; Cui X; Yen C; Wai CM
    J Phys Chem B; 2005 Aug; 109(30):14410-5. PubMed ID: 16852813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.