These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
514 related articles for article (PubMed ID: 21268885)
21. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Gu HH; Qiu H; Tian T; Zhan SS; Deng TH; Chaney RL; Wang SZ; Tang YT; Morel JL; Qiu RL Chemosphere; 2011 May; 83(9):1234-40. PubMed ID: 21470654 [TBL] [Abstract][Full Text] [Related]
22. Progress in assisted natural remediation of an arsenic contaminated agricultural soil. Mench M; Vangronsveld J; Beckx C; Ruttens A Environ Pollut; 2006 Nov; 144(1):51-61. PubMed ID: 16522348 [TBL] [Abstract][Full Text] [Related]
23. Leguminous plants nodulated by selected strains of Cupriavidus necator grow in heavy metal contaminated soils amended with calcium silicate. Avelar Ferreira PA; Lopes G; Bomfeti CA; de Oliveira Longatti SM; de Sousa Soares CR; Guimarães Guilherme LR; de Souza Moreira FM World J Microbiol Biotechnol; 2013 Nov; 29(11):2055-66. PubMed ID: 23670312 [TBL] [Abstract][Full Text] [Related]
24. An experimental and modelling exploration of the host-sanction hypothesis in legume-rhizobia mutualism. Marco DE; Carbajal JP; Cannas S; Pérez-Arnedo R; Hidalgo-Perea A; Olivares J; Ruiz-Sainz JE; Sanjuán J J Theor Biol; 2009 Aug; 259(3):423-33. PubMed ID: 19358857 [TBL] [Abstract][Full Text] [Related]
25. [Rhizobium/legume symbiose: a new sesame]. Giraud E Med Sci (Paris); 2007; 23(6-7):663-4. PubMed ID: 17631847 [No Abstract] [Full Text] [Related]
26. Measurement of symbiotic nitrogen-fixation in leguminous host-plants grown in heavy metal-contaminated soils amended with sewage sludge. Obbard JP; Jones KC Environ Pollut; 2001; 111(2):311-20. PubMed ID: 11202735 [TBL] [Abstract][Full Text] [Related]
27. Molecular insights into bacteroid development during Rhizobium-legume symbiosis. Haag AF; Arnold MF; Myka KK; Kerscher B; Dall'Angelo S; Zanda M; Mergaert P; Ferguson GP FEMS Microbiol Rev; 2013 May; 37(3):364-83. PubMed ID: 22998605 [TBL] [Abstract][Full Text] [Related]
28. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Rajkumar M; Vara Prasad MN; Freitas H; Ae N Crit Rev Biotechnol; 2009; 29(2):120-30. PubMed ID: 19514893 [TBL] [Abstract][Full Text] [Related]
29. Nitrogen-fixing legume tree species for the reclamation of severely degraded lands in Brazil. Chaer GM; Resende AS; Campello EF; de Faria SM; Boddey RM Tree Physiol; 2011 Feb; 31(2):139-49. PubMed ID: 21378065 [TBL] [Abstract][Full Text] [Related]
30. Agro-improving method of phytoextracting heavy metal contaminated soil. Wei S; Teixeira da Silva JA; Zhou Q J Hazard Mater; 2008 Feb; 150(3):662-8. PubMed ID: 17582683 [TBL] [Abstract][Full Text] [Related]
31. Potential of weed species applied to remediation of soils contaminated with heavy metals. Wei SH; Zhou QX; Wang X; Cao W; Ren LP; Song YF J Environ Sci (China); 2004; 16(5):868-73. PubMed ID: 15559831 [TBL] [Abstract][Full Text] [Related]
32. Enhanced phytoremdiation of Robinia pseudoacacia in heavy metal-contaminated soils with rhizobia and the associated bacterial community structure and function. Fan M; Xiao X; Guo Y; Zhang J; Wang E; Chen W; Lin Y; Wei G Chemosphere; 2018 Apr; 197():729-740. PubMed ID: 29407837 [TBL] [Abstract][Full Text] [Related]
33. [Reactive oxygen and nitrogen species in legume-rhizobial symbiosis: a review]. Glian'ko AK; Vasil'eva GG Prikl Biokhim Mikrobiol; 2010; 46(1):21-8. PubMed ID: 20198912 [TBL] [Abstract][Full Text] [Related]
34. Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis. Fauvart M; Michiels J FEMS Microbiol Lett; 2008 Aug; 285(1):1-9. PubMed ID: 18616593 [TBL] [Abstract][Full Text] [Related]
35. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Zahran HH Microbiol Mol Biol Rev; 1999 Dec; 63(4):968-89, table of contents. PubMed ID: 10585971 [TBL] [Abstract][Full Text] [Related]
36. Characteristics of the rhizobia associated with Dalea spp. in the Ordway, Kellogg-Weaver Dunes, and Hayden prairies. Tlusty B; van Berkum P; Graham PH Can J Microbiol; 2005 Jan; 51(1):15-23. PubMed ID: 15782230 [TBL] [Abstract][Full Text] [Related]
37. Proteomics: a novel approach to explore signal exchanges in Rhizobium-legume symbiosis. Vij N Indian J Exp Biol; 2003 Oct; 41(10):1133-5. PubMed ID: 15242279 [TBL] [Abstract][Full Text] [Related]
38. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Meers E; Ruttens A; Hopgood M; Lesage E; Tack FM Chemosphere; 2005 Oct; 61(4):561-72. PubMed ID: 16202810 [TBL] [Abstract][Full Text] [Related]
39. "In situ" phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Dary M; Chamber-Pérez MA; Palomares AJ; Pajuelo E J Hazard Mater; 2010 May; 177(1-3):323-30. PubMed ID: 20056325 [TBL] [Abstract][Full Text] [Related]
40. [The Rhizobium-Prosopis symbiosis in the Argentinian Chaco Arido]. Abril A; González C Rev Argent Microbiol; 1994; 26(1):1-8. PubMed ID: 7938496 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]