These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 21268970)

  • 81. Ecophysiology meets conservation: understanding the role of disease in amphibian population declines.
    Blaustein AR; Gervasi SS; Johnson PT; Hoverman JT; Belden LK; Bradley PW; Xie GY
    Philos Trans R Soc Lond B Biol Sci; 2012 Jun; 367(1596):1688-707. PubMed ID: 22566676
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park.
    McMenamin SK; Hadly EA; Wright CK
    Proc Natl Acad Sci U S A; 2008 Nov; 105(44):16988-93. PubMed ID: 18955700
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Strain differences in the amphibian chytrid Batrachochytrium dendrobatidis and non-permanent, sub-lethal effects of infection.
    Retallick RW; Miera V
    Dis Aquat Organ; 2007 May; 75(3):201-7. PubMed ID: 17629114
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Ecology: the proximate cause of frog declines?
    Di Rosa I; Simoncelli F; Fagotti A; Pascolini R
    Nature; 2007 May; 447(7144):E4-5; discussion E5-6. PubMed ID: 17538572
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Lack of evidence for the drought-linked chytridiomycosis hypothesis.
    Kriger KM
    J Wildl Dis; 2009 Apr; 45(2):537-41. PubMed ID: 19395768
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Biodiversity. Confronting amphibian declines and extinctions.
    Mendelson JR; Lips KR; Gagliardo RW; Rabb GB; Collins JP; Diffendorfer JE; Daszak P; Ibáñez D R; Zippel KC; Lawson DP; Wright KM; Stuart SN; Gascon C; da Silva HR; Burrowes PA; Joglar RL; La Marca E; Lötters S; du Preez LH; Weldon C; Hyatt A; Rodriguez-Mahecha JV; Hunt S; Robertson H; Lock B; Raxworthy CJ; Frost DR; Lacy RC; Alford RA; Campbell JA; Parra-Olea G; Bolaños F; Domingo JJ; Halliday T; Murphy JB; Wake MH; Coloma LA; Kuzmin SL; Price MS; Howell KM; Lau M; Pethiyagoda R; Boone M; Lannoo MJ; Blaustein AR; Dobson A; Griffiths RA; Crump ML; Wake DB; Brodie ED
    Science; 2006 Jul; 313(5783):48. PubMed ID: 16825553
    [No Abstract]   [Full Text] [Related]  

  • 87. Food web structure and interaction strength pave the way for vulnerability to extinction.
    Karlsson P; Jonsson T; Jonsson A
    J Theor Biol; 2007 Nov; 249(1):77-92. PubMed ID: 17727894
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Resistance, tolerance and environmental transmission dynamics determine host extinction risk in a load-dependent amphibian disease.
    Wilber MQ; Knapp RA; Toothman M; Briggs CJ
    Ecol Lett; 2017 Sep; 20(9):1169-1181. PubMed ID: 28745026
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Ecology: global warming and amphibian losses.
    Alford RA; Bradfield KS; Richards SJ
    Nature; 2007 May; 447(7144):E3-4; discussion E5-6. PubMed ID: 17538571
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Seasonality of Batrachochytrium dendrobatidis infection in direct-developing frogs suggests a mechanism for persistence.
    Longo AV; Burrowes PA; Joglar RL
    Dis Aquat Organ; 2010 Nov; 92(2-3):253-60. PubMed ID: 21268989
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The cause of global amphibian declines: a developmental endocrinologist's perspective.
    Hayes TB; Falso P; Gallipeau S; Stice M
    J Exp Biol; 2010 Mar; 213(6):921-33. PubMed ID: 20190117
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Sodium hypochlorite denatures the DNA of the amphibian chytrid fungus Batrachochytrium dendrobatidis.
    Cashins SD; Skerratt LF; Alford RA
    Dis Aquat Organ; 2008 Jun; 80(1):63-7. PubMed ID: 18714685
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Parallels in amphibian and bat declines from pathogenic fungi.
    Eskew EA; Todd BD
    Emerg Infect Dis; 2013 Mar; 19(3):379-85. PubMed ID: 23622255
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Chytrid blinders: what other disease risks to amphibians are we missing?
    Duffus AL
    Ecohealth; 2009 Sep; 6(3):335-9. PubMed ID: 20135193
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Virulence and Pathogenicity of Chytrid Fungi Causing Amphibian Extinctions.
    Fisher MC; Pasmans F; Martel A
    Annu Rev Microbiol; 2021 Oct; 75():673-693. PubMed ID: 34351790
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Pathogen pollution and the emergence of a deadly amphibian pathogen.
    McKenzie VJ; Peterson AC
    Mol Ecol; 2012 Nov; 21(21):5151-4. PubMed ID: 23075064
    [TBL] [Abstract][Full Text] [Related]  

  • 97. There is no evidence for a temporal link between pathogen arrival and frog extinctions in north-eastern Australia.
    Phillips BL; Puschendorf R; Vanderwal J; Alford RA
    PLoS One; 2012; 7(12):e52502. PubMed ID: 23300687
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Complex interactive effects of water mold, herbicide, and the fungus Batrachochytrium dendrobatidis on Pacific treefrog Hyliola regilla hosts.
    Romansic JM; Johnson JE; Wagner RS; Hill RH; Gaulke CA; Vredenburg VT; Blaustein AR
    Dis Aquat Organ; 2017 Mar; 123(3):227-238. PubMed ID: 28322209
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Overview of chytrid emergence and impacts on amphibians.
    Lips KR
    Philos Trans R Soc Lond B Biol Sci; 2016 Dec; 371(1709):. PubMed ID: 28080989
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Effects of temperature and hydric environment on survival of the Panamanian Golden Frog infected with a pathogenic chytrid fungus.
    Bustamante HM; Livo LJ; Carey C
    Integr Zool; 2010 Jun; 5(2):143-153. PubMed ID: 21392332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.