These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21269877)

  • 1. Role of angiotensin in the rostral ventrolateral medulla in the development and maintenance of hypertension.
    Allen AM
    Curr Opin Pharmacol; 2011 Apr; 11(2):117-23. PubMed ID: 21269877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central neural regulation of cardiovascular function by angiotensin: a focus on the rostral ventrolateral medulla.
    Allen AM; O'Callaghan EL; Chen D; Bassi JK
    Neuroendocrinology; 2009; 89(4):361-9. PubMed ID: 19174604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous angiotensin within the rostral ventrolateral medulla facilitates the somatosympathetic reflex.
    Hirooka Y; Dampney RA
    J Hypertens; 1995 Jul; 13(7):747-54. PubMed ID: 7594438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brainstem mechanisms of hypertension: role of the rostral ventrolateral medulla.
    Sved AF; Ito S; Sved JC
    Curr Hypertens Rep; 2003 Jun; 5(3):262-8. PubMed ID: 12724060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation in the effects of the angiotensin II receptor blocker class on autonomic function.
    Esler M
    J Hypertens Suppl; 2002 Jun; 20(5):S13-9. PubMed ID: 12184059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sympathetic and renin-angiotensin systems contribute to increased blood pressure in sucrose-fed rats.
    Freitas RR; Lopes KL; Carillo BA; Bergamaschi CT; Carmona AK; Casarini DE; Furukawa L; Heimann JC; Campos RR; Dolnikoff MS
    Am J Hypertens; 2007 Jun; 20(6):692-8. PubMed ID: 17531930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of an L- and N-type calcium channel blocker in hypertensive patients with neurovascular compression of the rostral ventrolateral medulla.
    Aota Y; Morimoto S; Sakuma T; Morita T; Jo F; Takahashi N; Maehara M; Ikeda K; Sawada S; Iwasaka T
    Hypertens Res; 2009 Aug; 32(8):700-5. PubMed ID: 19521420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The role of the sympathetic nervous system-activating structures of the ventrolateral area of the medulla oblongata in the regulation of cardiac activity].
    Kade AKh
    Fiziol Zh (1978); 1991; 37(1):12-8. PubMed ID: 1647329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sympathetic premotor neurons mediating thermoregulatory functions.
    Nakamura K; Matsumura K; Kobayashi S; Kaneko T
    Neurosci Res; 2005 Jan; 51(1):1-8. PubMed ID: 15596234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla.
    Chan SH; Hsu KS; Huang CC; Wang LL; Ou CC; Chan JY
    Circ Res; 2005 Oct; 97(8):772-80. PubMed ID: 16151022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressor response to pulsatile compression of the rostral ventrolateral medulla mediated by nitric oxide and c-fos expression.
    Morimoto S; Sasaki S; Miki S; Kawa T; Itoh H; Nakata T; Takeda K; Nakagawa M
    Br J Pharmacol; 2000 Mar; 129(5):859-64. PubMed ID: 10696082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of arginine vasopressin and the sympathetic nervous system to fulminating hypertension after destruction of neurons of caudal ventrolateral medulla in the rat.
    Imaizumi T; Granata AR; Benarroch EE; Sved AF; Reis DJ
    J Hypertens; 1985 Oct; 3(5):491-501. PubMed ID: 4067306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The rostral ventrolateral medulla mediates sympathetic baroreflex responses to intraventricular angiotensin II in rabbits.
    Saigusa T; Granger NS; Godwin SJ; Head GA
    Auton Neurosci; 2003 Aug; 107(1):20-31. PubMed ID: 12927223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the RVLM neurons in the viscero-sympathetic reflex: a mini review.
    Koganezawa T; Shimomura Y; Terui N
    Auton Neurosci; 2008 Nov; 142(1-2):17-9. PubMed ID: 18457999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabotropic neurotransmission and integration of sympathetic nerve activity by the rostral ventrolateral medulla in the rat.
    Pilowsky PM; Abbott SB; Burke PG; Farnham MM; Hildreth CM; Kumar NN; Li Q; Lonergan T; McMullan S; Spirovski D; Goodchild AK
    Clin Exp Pharmacol Physiol; 2008 Apr; 35(4):508-11. PubMed ID: 18307751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High salt intake enhances blood pressure increase during development of hypertension via oxidative stress in rostral ventrolateral medulla of spontaneously hypertensive rats.
    Koga Y; Hirooka Y; Araki S; Nozoe M; Kishi T; Sunagawa K
    Hypertens Res; 2008 Nov; 31(11):2075-83. PubMed ID: 19098380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential responses of sympathetic premotor neurons in the rostral ventrolateral medulla to stimulation of the dorsomedial hypothalamus in rabbits.
    Wang R; Koganezawa T; Terui N
    Brain Res; 2010 Oct; 1356():44-53. PubMed ID: 20713029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sympathetic control of blood pressure.
    Guyenet PG
    Nat Rev Neurosci; 2006 May; 7(5):335-46. PubMed ID: 16760914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Role of central angiotensin in regulating cardiovascular activity].
    Zhu GQ; Wang W
    Sheng Li Ke Xue Jin Zhan; 2003 Oct; 34(4):343-6. PubMed ID: 14992019
    [No Abstract]   [Full Text] [Related]  

  • 20. [Mechanisms of hypertension in the central nervous system].
    Kubo T
    Yakugaku Zasshi; 2006 Sep; 126(9):695-709. PubMed ID: 16946584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.