These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 21270490)
1. Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer. Schumann T; Gotschke T; Limbach F; Stoica T; Calarco R Nanotechnology; 2011 Mar; 22(9):095603. PubMed ID: 21270490 [TBL] [Abstract][Full Text] [Related]
2. The nature of catalyst particles and growth mechanisms of GaN nanowires grown by Ni-assisted metal-organic chemical vapor deposition. Weng X; Burke RA; Redwing JM Nanotechnology; 2009 Feb; 20(8):085610. PubMed ID: 19417458 [TBL] [Abstract][Full Text] [Related]
3. Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy. Calarco R; Meijers RJ; Debnath RK; Stoica T; Sutter E; Lüth H Nano Lett; 2007 Aug; 7(8):2248-51. PubMed ID: 17602537 [TBL] [Abstract][Full Text] [Related]
4. A nanoporous AlN layer patterned by anodic aluminum oxide and its application as a buffer layer in a GaN-based light-emitting diode. Chen LC; Wang CK; Huang JB; Hong LS Nanotechnology; 2009 Feb; 20(8):085303. PubMed ID: 19417447 [TBL] [Abstract][Full Text] [Related]
5. Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires. Hou WC; Hong FC Nanotechnology; 2009 Feb; 20(5):055606. PubMed ID: 19417353 [TBL] [Abstract][Full Text] [Related]
6. Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111). Krogstrup P; Popovitz-Biro R; Johnson E; Madsen MH; Nygård J; Shtrikman H Nano Lett; 2010 Nov; 10(11):4475-82. PubMed ID: 20932012 [TBL] [Abstract][Full Text] [Related]
7. Nanoepitaxy of GaAs on a Si(001) substrate using a round-hole nanopatterned SiO2 mask. Hsu CW; Chen YF; Su YK Nanotechnology; 2012 Dec; 23(49):495306. PubMed ID: 23154824 [TBL] [Abstract][Full Text] [Related]
8. Truncated tetrahedron seed crystals initiating stereoaligned growth of FeSi nanowires. Kim SI; Yoon H; Seo K; Yoo Y; Lee S; Kim B ACS Nano; 2012 Oct; 6(10):8652-7. PubMed ID: 22966939 [TBL] [Abstract][Full Text] [Related]
9. Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. Xu S; Wei Y; Kirkham M; Liu J; Mai W; Davidovic D; Snyder RL; Wang ZL J Am Chem Soc; 2008 Nov; 130(45):14958-9. PubMed ID: 18921981 [TBL] [Abstract][Full Text] [Related]
10. Effect of growth orientation and diameter on the elasticity of GaN nanowires. A combined in situ TEM and atomistic modeling investigation. Bernal RA; Agrawal R; Peng B; Bertness KA; Sanford NA; Davydov AV; Espinosa HD Nano Lett; 2011 Feb; 11(2):548-55. PubMed ID: 21171602 [TBL] [Abstract][Full Text] [Related]
11. The influence of an AlN seeding layer on nucleation of self-assembled GaN nanowires on silicon substrates. Wu Y; Liu B; Li Z; Tao T; Xie Z; Wang K; Xiu X; Chen D; Lu H; Zhang R; Zheng Y Nanotechnology; 2020 Jan; 31(4):045604. PubMed ID: 31578003 [TBL] [Abstract][Full Text] [Related]
12. Growth and characteristics of self-assembly defect-free GaN surface islands by molecular beam epitaxy. Hsu KY; Wang CY; Liu CP J Nanosci Nanotechnol; 2011 Apr; 11(4):3393-8. PubMed ID: 21776715 [TBL] [Abstract][Full Text] [Related]
13. Compatibility of the selective area growth of GaN nanowires on AlN-buffered Si substrates with the operation of light emitting diodes. Musolino M; Tahraoui A; Fernández-Garrido S; Brandt O; Trampert A; Geelhaar L; Riechert H Nanotechnology; 2015 Feb; 26(8):085605. PubMed ID: 25656795 [TBL] [Abstract][Full Text] [Related]
14. Nucleation mechanism of GaN nanowires grown on (111) Si by molecular beam epitaxy. Landré O; Bougerol C; Renevier H; Daudin B Nanotechnology; 2009 Oct; 20(41):415602. PubMed ID: 19755728 [TBL] [Abstract][Full Text] [Related]
15. Effects of the surface preparation and buffer layer on the morphology, electronic and optical properties of the GaN nanowires on Si. Bolshakov AD; Fedorov VV; Shugurov KY; Mozharov AM; Sapunov GA; Shtrom IV; Mukhin MS; Uvarov AV; Cirlin GE; Mukhin IS Nanotechnology; 2019 Sep; 30(39):395602. PubMed ID: 31234150 [TBL] [Abstract][Full Text] [Related]
16. A crystallographic investigation of GaN nanostructures by reciprocal space mapping in a grazing incidence geometry. Lee S; Sohn Y; Kim C; Lee DR; Lee HH Nanotechnology; 2009 May; 20(21):215703. PubMed ID: 19423942 [TBL] [Abstract][Full Text] [Related]
17. Rate-limiting mechanisms in high-temperature growth of catalyst-free InAs nanowires with large thermal stability. Hertenberger S; Rudolph D; Becker J; Bichler M; Finley JJ; Abstreiter G; Koblmüller G Nanotechnology; 2012 Jun; 23(23):235602. PubMed ID: 22595881 [TBL] [Abstract][Full Text] [Related]
18. Size-dependent photoconductivity in MBE-grown GaN-nanowires. Calarco R; Marso M; Richter T; Aykanat AI; Meijers R; V D Hart A; Stoica T; Lüth H Nano Lett; 2005 May; 5(5):981-4. PubMed ID: 15884906 [TBL] [Abstract][Full Text] [Related]
19. Selective atomic layer deposition of metal oxide thin films on patterned self-assembled monolayers formed by microcontact printing. Lee BH; Sung MM J Nanosci Nanotechnol; 2007 Nov; 7(11):3758-64. PubMed ID: 18047053 [TBL] [Abstract][Full Text] [Related]
20. Directed synthesis of germanium oxide nanowires by vapor-liquid-solid oxidation. Gunji M; Thombare SV; Hu S; McIntyre PC Nanotechnology; 2012 Sep; 23(38):385603. PubMed ID: 22947505 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]