BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 21270902)

  • 1. Potassium channel blockers as an effective treatment to restore impulse conduction in injured axons.
    Shi R; Sun W
    Neurosci Bull; 2011 Feb; 27(1):36-44. PubMed ID: 21270902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium channel blocker, 4-aminopyridine-3-methanol, restores axonal conduction in spinal cord of an animal model of multiple sclerosis.
    Leung G; Sun W; Brookes S; Smith D; Shi R
    Exp Neurol; 2011 Jan; 227(1):232-5. PubMed ID: 21093437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acrolein-mediated conduction loss is partially restored by K⁺ channel blockers.
    Yan R; Page JC; Shi R
    J Neurophysiol; 2016 Feb; 115(2):701-10. PubMed ID: 26581866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 4-Aminopyridine derivatives enhance impulse conduction in guinea-pig spinal cord following traumatic injury.
    McBride JM; Smith DT; Byrn SR; Borgens RB; Shi R
    Neuroscience; 2007 Aug; 148(1):44-52. PubMed ID: 17629412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paranodal myelin damage after acute stretch in Guinea pig spinal cord.
    Sun W; Fu Y; Shi Y; Cheng JX; Cao P; Shi R
    J Neurotrauma; 2012 Feb; 29(3):611-9. PubMed ID: 21988176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel potassium channel blocker, 4-AP-3-MeOH, inhibits fast potassium channels and restores axonal conduction in injured guinea pig spinal cord white matter.
    Sun W; Smith D; Fu Y; Cheng JX; Bryn S; Borgens R; Shi R
    J Neurophysiol; 2010 Jan; 103(1):469-78. PubMed ID: 19923250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of 4-aminopyridine on stretched mammalian spinal cord: the role of potassium channels in axonal conduction.
    Jensen JM; Shi R
    J Neurophysiol; 2003 Oct; 90(4):2334-40. PubMed ID: 12853442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel Evaluation of Two Potassium Channel Blockers in Restoring Conduction in Mechanical Spinal Cord Injury in Rat.
    Page JC; Park J; Chen Z; Cao P; Shi R
    J Neurotrauma; 2018 May; 35(9):1057-1068. PubMed ID: 29228863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Ion channels and demyelination: basis of a treatment of experimental autoimmune encephalomyelitis (EAE) by potassium channel blockers].
    Devaux J; Beeton C; Béraud E; Crest M
    Rev Neurol (Paris); 2004 May; 160(5 Pt 2):S16-27. PubMed ID: 15269656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dalfampridine: a brief review of its mechanism of action and efficacy as a treatment to improve walking in patients with multiple sclerosis.
    Dunn J; Blight A
    Curr Med Res Opin; 2011 Jul; 27(7):1415-23. PubMed ID: 21595605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of low and high concentrations of 4-aminopyridine on axonal conduction in normal and injured spinal cord.
    Shi R; Blight AR
    Neuroscience; 1997 Mar; 77(2):553-62. PubMed ID: 9472411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathological changes of isolated spinal cord axons in response to mechanical stretch.
    Shi R; Pryor JD
    Neuroscience; 2002; 110(4):765-77. PubMed ID: 11934483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conduction block in acute and chronic spinal cord injury: different dose-response characteristics for reversal by 4-aminopyridine.
    Shi R; Kelly TM; Blight AR
    Exp Neurol; 1997 Dec; 148(2):495-501. PubMed ID: 9417828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of 4-aminopyridine on demyelinated axons, synapses and muscle tension.
    Smith KJ; Felts PA; John GR
    Brain; 2000 Jan; 123 ( Pt 1)():171-84. PubMed ID: 10611131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demyelination in spinal cord injury and multiple sclerosis: what can we do to enhance functional recovery?
    Waxman SG
    J Neurotrauma; 1992 Mar; 9 Suppl 1():S105-17. PubMed ID: 1588601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage-gated potassium channels.
    Nashmi R; Fehlings MG
    Brain Res Brain Res Rev; 2001 Dec; 38(1-2):165-91. PubMed ID: 11750932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in pharmacological sensitivity of the spinal cord to potassium channel blockers following acute spinal cord injury.
    Fehlings MG; Nashmi R
    Brain Res; 1996 Oct; 736(1-2):135-45. PubMed ID: 8930318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compression injury of mammalian spinal cord in vitro and the dynamics of action potential conduction failure.
    Shi R; Blight AR
    J Neurophysiol; 1996 Sep; 76(3):1572-80. PubMed ID: 8890277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dose responses of three 4-aminopyridine derivatives on axonal conduction in spinal cord trauma.
    McBride JM; Smith DT; Byrn SR; Borgens RB; Shi R
    Eur J Pharm Sci; 2006 Feb; 27(2-3):237-42. PubMed ID: 16297607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow sodium-dependent potential oscillations contribute to ectopic firing in mammalian demyelinated axons.
    Kapoor R; Li YG; Smith KJ
    Brain; 1997 Apr; 120 ( Pt 4)():647-52. PubMed ID: 9153126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.