BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 21271301)

  • 1. Acetylation as a transcriptional control mechanism-HDACs and HATs in pancreatic ductal adenocarcinoma.
    Schneider G; Krämer OH; Schmid RM; Saur D
    J Gastrointest Cancer; 2011 Jun; 42(2):85-92. PubMed ID: 21271301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting histone deacetylases in pancreatic ductal adenocarcinoma.
    Schneider G; Krämer OH; Fritsche P; Schüler S; Schmid RM; Saur D
    J Cell Mol Med; 2010 Jun; 14(6A):1255-63. PubMed ID: 19929947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirement of a specific Sp1 site for histone deacetylase-mediated repression of transforming growth factor beta Type II receptor expression in human pancreatic cancer cells.
    Zhao S; Venkatasubbarao K; Li S; Freeman JW
    Cancer Res; 2003 May; 63(10):2624-30. PubMed ID: 12750289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone deacetylases: A novel class of therapeutic targets for pancreatic cancer.
    Xiang XS; Li PC; Wang WQ; Liu L
    Biochim Biophys Acta Rev Cancer; 2022 Jan; 1877(1):188676. PubMed ID: 35016922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High HDAC9 is associated with poor prognosis and promotes malignant progression in pancreatic ductal adenocarcinoma.
    Li H; Li X; Lin H; Gong J
    Mol Med Rep; 2020 Feb; 21(2):822-832. PubMed ID: 31974610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MTA2-mediated inhibition of PTEN leads to pancreatic ductal adenocarcinoma carcinogenicity.
    Si W; Liu X; Wei R; Zhang Y; Zhao Y; Cui L; Hong T
    Cell Death Dis; 2019 Feb; 10(3):206. PubMed ID: 30814496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioanalytical approaches for the detection of protein acetylation-related enzymes.
    Li P; Han Y; Li Y; Zhu R; Wang H; Nie Z; Yao S
    Anal Bioanal Chem; 2016 Apr; 408(11):2659-68. PubMed ID: 26790874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes.
    Wang Z; Zang C; Cui K; Schones DE; Barski A; Peng W; Zhao K
    Cell; 2009 Sep; 138(5):1019-31. PubMed ID: 19698979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis.
    Saha RN; Pahan K
    Cell Death Differ; 2006 Apr; 13(4):539-50. PubMed ID: 16167067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The HAT/HDAC interplay: multilevel control of STAT signaling.
    Icardi L; De Bosscher K; Tavernier J
    Cytokine Growth Factor Rev; 2012 Dec; 23(6):283-91. PubMed ID: 22989617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of protein turnover by acetyltransferases and deacetylases.
    Sadoul K; Boyault C; Pabion M; Khochbin S
    Biochimie; 2008 Feb; 90(2):306-12. PubMed ID: 17681659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of histone acetylation and deacetylation enzymes affects longevity, development, and fecundity in the pea aphid (Acyrthosiphon pisum).
    Kirfel P; Skaljac M; Grotmann J; Kessel T; Seip M; Michaelis K; Vilcinskas A
    Arch Insect Biochem Physiol; 2020 Mar; 103(3):e21614. PubMed ID: 31498475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HDAC2 attenuates TRAIL-induced apoptosis of pancreatic cancer cells.
    Schüler S; Fritsche P; Diersch S; Arlt A; Schmid RM; Saur D; Schneider G
    Mol Cancer; 2010 Apr; 9():80. PubMed ID: 20398369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional collagen I promotes gemcitabine resistance in vitro in pancreatic cancer cells through HMGA2-dependent histone acetyltransferase expression.
    Dangi-Garimella S; Sahai V; Ebine K; Kumar K; Munshi HG
    PLoS One; 2013; 8(5):e64566. PubMed ID: 23696899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of histone deacetylases (HDACs) in human cancer.
    Ropero S; Esteller M
    Mol Oncol; 2007 Jun; 1(1):19-25. PubMed ID: 19383284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HDAC3 mediates smoking-induced pancreatic cancer.
    Edderkaoui M; Xu S; Chheda C; Morvaridi S; Hu RW; Grippo PJ; Mascariñas E; Principe DR; Knudsen B; Xue J; Habtezion A; Uyeminami D; Pinkerton KE; Pandol SJ
    Oncotarget; 2016 Feb; 7(7):7747-60. PubMed ID: 26745602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of histone acetyltransferases and histone deacetylases in adipocyte differentiation and adipogenesis.
    Zhou Y; Peng J; Jiang S
    Eur J Cell Biol; 2014 Apr; 93(4):170-7. PubMed ID: 24810880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Histone Acetyltransferases and Histone Deacetylases in Photoreceptor Differentiation and Degeneration.
    Zhao M; Tao Y; Peng GH
    Int J Med Sci; 2020; 17(10):1307-1314. PubMed ID: 32624685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of KDM6A characterizes a poor prognostic subtype of human pancreatic cancer and potentiates HDAC inhibitor lethality.
    Watanabe S; Shimada S; Akiyama Y; Ishikawa Y; Ogura T; Ogawa K; Ono H; Mitsunori Y; Ban D; Kudo A; Yamaoka S; Tanabe M; Tanaka S
    Int J Cancer; 2019 Jul; 145(1):192-205. PubMed ID: 30556125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone acetylation modifiers in the pathogenesis of malignant disease.
    Mahlknecht U; Hoelzer D
    Mol Med; 2000 Aug; 6(8):623-44. PubMed ID: 11055583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.