These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 21272170)

  • 1. Regulation of fusion pore closure and compound exocytosis in neuroendocrine PC12 cells by SCAMP1.
    Zhang J; Castle D
    Traffic; 2011 May; 12(5):600-14. PubMed ID: 21272170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonredundant function of secretory carrier membrane protein isoforms in dense core vesicle exocytosis.
    Liao H; Zhang J; Shestopal S; Szabo G; Castle A; Castle D
    Am J Physiol Cell Physiol; 2008 Mar; 294(3):C797-809. PubMed ID: 18171723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Phosphoprotein Synapsin Ia Regulates the Kinetics of Dense-Core Vesicle Release.
    Yang HJ; Chen PC; Huang CT; Cheng TL; Hsu SP; Chen CY; Lu JC; Wang CT
    J Neurosci; 2021 Mar; 41(13):2828-2841. PubMed ID: 33632727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secretory carrier membrane protein SCAMP2 and phosphatidylinositol 4,5-bisphosphate interactions in the regulation of dense core vesicle exocytosis.
    Liao H; Ellena J; Liu L; Szabo G; Cafiso D; Castle D
    Biochemistry; 2007 Sep; 46(38):10909-20. PubMed ID: 17713930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of SCAMP1 function in secretory vesicle exocytosis by means of gene targeting in mice.
    Fernández-Chacón R; Alvarez de Toledo G; Hammer RE; Südhof TC
    J Biol Chem; 1999 Nov; 274(46):32551-4. PubMed ID: 10551807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SCAMP2 interacts with Arf6 and phospholipase D1 and links their function to exocytotic fusion pore formation in PC12 cells.
    Liu L; Liao H; Castle A; Zhang J; Casanova J; Szabo G; Castle D
    Mol Biol Cell; 2005 Oct; 16(10):4463-72. PubMed ID: 16030257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles.
    Chiang HC; Shin W; Zhao WD; Hamid E; Sheng J; Baydyuk M; Wen PJ; Jin A; Momboisse F; Wu LG
    Nat Commun; 2014; 5():3356. PubMed ID: 24561832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptotagmin IV modulation of vesicle size and fusion pores in PC12 cells.
    Zhang Z; Zhang Z; Jackson MB
    Biophys J; 2010 Mar; 98(6):968-78. PubMed ID: 20303854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging of evoked dense-core-vesicle exocytosis in hippocampal neurons reveals long latencies and kiss-and-run fusion events.
    Xia X; Lessmann V; Martin TF
    J Cell Sci; 2009 Jan; 122(Pt 1):75-82. PubMed ID: 19066284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of secretory carrier membrane protein SCAMP2 in granule exocytosis.
    Liu L; Guo Z; Tieu Q; Castle A; Castle D
    Mol Biol Cell; 2002 Dec; 13(12):4266-78. PubMed ID: 12475951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion.
    Lynch KL; Gerona RR; Kielar DM; Martens S; McMahon HT; Martin TF
    Mol Biol Cell; 2008 Dec; 19(12):5093-103. PubMed ID: 18799625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silence of Synaptotagmin VII inhibits release of dense core vesicles in PC12 cells.
    Li J; Xiao Y; Zhou W; Wu Z; Zhang R; Xu T
    Sci China C Life Sci; 2009 Dec; 52(12):1156-63. PubMed ID: 20016973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preformed Ω-profile closure and kiss-and-run mediate endocytosis and diverse endocytic modes in neuroendocrine chromaffin cells.
    Shin W; Wei L; Arpino G; Ge L; Guo X; Chan CY; Hamid E; Shupliakov O; Bleck CKE; Wu LG
    Neuron; 2021 Oct; 109(19):3119-3134.e5. PubMed ID: 34411513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion pores, SNAREs, and exocytosis.
    Vardjan N; Jorgacevski J; Zorec R
    Neuroscientist; 2013 Apr; 19(2):160-74. PubMed ID: 23019088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion.
    Kabachinski G; Kielar-Grevstad DM; Zhang X; James DJ; Martin TF
    Mol Biol Cell; 2016 Feb; 27(4):654-68. PubMed ID: 26700319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging direct, dynamin-dependent recapture of fusing secretory granules on plasma membrane lawns from PC12 cells.
    Holroyd P; Lang T; Wenzel D; De Camilli P; Jahn R
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16806-11. PubMed ID: 12486251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oligophrenin-1 Connects Exocytotic Fusion to Compensatory Endocytosis in Neuroendocrine Cells.
    Houy S; Estay-Ahumada C; Croisé P; Calco V; Haeberlé AM; Bailly Y; Billuart P; Vitale N; Bader MF; Ory S; Gasman S
    J Neurosci; 2015 Aug; 35(31):11045-55. PubMed ID: 26245966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca(2+)-dependent activator protein for secretion is critical for the fusion of dense-core vesicles with the membrane in calf adrenal chromaffin cells.
    Elhamdani A; Martin TF; Kowalchyk JA; Artalejo CR
    J Neurosci; 1999 Sep; 19(17):7375-83. PubMed ID: 10460244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two modes of exocytosis in an artificial cell.
    Mellander LJ; Kurczy ME; Najafinobar N; Dunevall J; Ewing AG; Cans AS
    Sci Rep; 2014 Jan; 4():3847. PubMed ID: 24457949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphomimetic mutation of cysteine string protein-α increases the rate of regulated exocytosis by modulating fusion pore dynamics in PC12 cells.
    Chiang N; Hsiao YT; Yang HJ; Lin YC; Lu JC; Wang CT
    PLoS One; 2014; 9(6):e99180. PubMed ID: 24956274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.