These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21272955)

  • 1. Overexpression of HEMA1 encoding glutamyl-tRNA reductase.
    Schmied J; Hedtke B; Grimm B
    J Plant Physiol; 2011 Aug; 168(12):1372-9. PubMed ID: 21272955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GluTR2 complements a hema1 mutant lacking glutamyl-tRNA reductase 1, but is differently regulated at the post-translational level.
    Apitz J; Schmied J; Lehmann MJ; Hedtke B; Grimm B
    Plant Cell Physiol; 2014 Mar; 55(3):645-57. PubMed ID: 24449654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence in blue light (FLU) is involved in inactivation and localization of glutamyl-tRNA reductase during light exposure.
    Hou Z; Yang Y; Hedtke B; Grimm B
    Plant J; 2019 Feb; 97(3):517-529. PubMed ID: 30362619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concurrent interactions of heme and FLU with Glu tRNA reductase (HEMA1), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- and light-grown Arabidopsis plants.
    Goslings D; Meskauskiene R; Kim C; Lee KP; Nater M; Apel K
    Plant J; 2004 Dec; 40(6):957-67. PubMed ID: 15584960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Posttranslational Control of ALA Synthesis Includes GluTR Degradation by Clp Protease and Stabilization by GluTR-Binding Protein.
    Apitz J; Nishimura K; Schmied J; Wolf A; Hedtke B; van Wijk KJ; Grimm B
    Plant Physiol; 2016 Apr; 170(4):2040-51. PubMed ID: 26884485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo functional analysis of the structural domains of FLUORESCENT (FLU).
    Hou Z; Pang X; Hedtke B; Grimm B
    Plant J; 2021 Jul; 107(2):360-376. PubMed ID: 33901334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled Partitioning of Glutamyl-tRNA Reductase in Stroma- and Membrane-Associated Fractions Affects the Synthesis of 5-Aminolevulinic Acid.
    Schmied J; Hou Z; Hedtke B; Grimm B
    Plant Cell Physiol; 2018 Nov; 59(11):2204-2213. PubMed ID: 30032295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Arabidopsis GluTR binding protein mediates spatial separation of 5-aminolevulinic acid synthesis in chloroplasts.
    Czarnecki O; Hedtke B; Melzer M; Rothbart M; Richter A; Schröter Y; Pfannschmidt T; Grimm B
    Plant Cell; 2011 Dec; 23(12):4476-91. PubMed ID: 22180625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel tetratricopeptide-repeat protein, TTP1, forms complexes with glutamyl-tRNA reductase and protochlorophyllide oxidoreductase during tetrapyrrole biosynthesis.
    Herbst J; Pang X; Roling L; Grimm B
    J Exp Bot; 2024 Mar; 75(7):2027-2045. PubMed ID: 38070484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana.
    McCormac AC; Fischer A; Kumar AM; Söll D; Terry MJ
    Plant J; 2001 Mar; 25(5):549-61. PubMed ID: 11309145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gabaculine alters plastid development and differentially affects abundance of plastid-encoded DPOR and nuclear-encoded GluTR and FLU-like proteins in spruce cotyledons.
    Demko V; Pavlovic A; Hudák J
    J Plant Physiol; 2010 Jun; 167(9):693-700. PubMed ID: 20129699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Non-canonical Tetratricopeptide Repeat (TPR) Domain of Fluorescent (FLU) Mediates Complex Formation with Glutamyl-tRNA Reductase.
    Zhang M; Zhang F; Fang Y; Chen X; Chen Y; Zhang W; Dai HE; Lin R; Liu L
    J Biol Chem; 2015 Jul; 290(28):17559-65. PubMed ID: 26037924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The GluTR-binding protein is the heme-binding factor for feedback control of glutamyl-tRNA reductase.
    Richter AS; Banse C; Grimm B
    Elife; 2019 Jun; 8():. PubMed ID: 31194674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FC2 stabilizes POR and suppresses ALA formation in the tetrapyrrole biosynthesis pathway.
    Fan T; Roling L; Hedtke B; Grimm B
    New Phytol; 2023 Jul; 239(2):624-638. PubMed ID: 37161708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HEMA RNAi silencing reveals a control mechanism of ALA biosynthesis on Mg chelatase and Fe chelatase.
    Hedtke B; Alawady A; Chen S; Börnke F; Grimm B
    Plant Mol Biol; 2007 Aug; 64(6):733-42. PubMed ID: 17571216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of fumarylacetoacetate hydrolase causes light-dependent increases in protochlorophyllide and cell death in Arabidopsis.
    Zhi T; Zhou Z; Qiu B; Zhu Q; Xiong X; Ren C
    Plant J; 2019 May; 98(4):622-638. PubMed ID: 30666736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A second and differentially expressed glutamyl-tRNA reductase gene from Arabidopsis thaliana.
    Kumar AM; Csankovszki G; Söll D
    Plant Mol Biol; 1996 Feb; 30(3):419-26. PubMed ID: 8605295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Misregulation of tetrapyrrole biosynthesis in transgenic tobacco seedlings expressing mammalian biliverdin reductase.
    Franklin KA; Linley PJ; Montgomery BL; Lagarias JC; Thomas B; Jackson SD; Terry MJ
    Plant J; 2003 Sep; 35(6):717-28. PubMed ID: 12969425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deficiency in riboflavin biosynthesis affects tetrapyrrole biosynthesis in etiolated Arabidopsis tissue.
    Hedtke B; Alawady A; Albacete A; Kobayashi K; Melzer M; Roitsch T; Masuda T; Grimm B
    Plant Mol Biol; 2012 Jan; 78(1-2):77-93. PubMed ID: 22081402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Functions of Chloroplast Glutamyl-tRNA in Translation and Tetrapyrrole Biosynthesis.
    Agrawal S; Karcher D; Ruf S; Bock R
    Plant Physiol; 2020 May; 183(1):263-276. PubMed ID: 32071153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.