BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2127312)

  • 21. Activity of glucose oxidase immobilized onto Fe3+ attached hydroxypropyl methylcellulose films.
    Sözügeçer S; Bayramgil NP
    Colloids Surf B Biointerfaces; 2013 Jan; 101():19-25. PubMed ID: 23010019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphological and Physicochemical Evaluation of Two Distinct Glibenclamide/Hypromellose Amorphous Nanoparticles Prepared by the Antisolvent Method.
    Yonashiro H; Higashi K; Morikawa C; Ueda K; Itoh T; Ito M; Masu H; Noguchi S; Moribe K
    Mol Pharm; 2018 Apr; 15(4):1587-1597. PubMed ID: 29502422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel white film for pharmaceutical coating formed by interaction of calcium lactate pentahydrate with hydroxypropyl methylcellulose.
    Sakata Y; Shiraishi S; Otsuka M
    Int J Pharm; 2006 Jul; 317(2):120-6. PubMed ID: 16621357
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and performance of hydroxypropyl methylcellulose esters of substituted succinates for in vitro supersaturation of a crystalline hydrophobic drug.
    Yin L; Hillmyer MA
    Mol Pharm; 2014 Jan; 11(1):175-85. PubMed ID: 24320108
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Is there a chemical interaction between calcium phosphates and hydroxypropylmethylcellulose (HPMC) in organic/inorganic composites?
    Dorozhkin SV
    J Biomed Mater Res; 2001 Feb; 54(2):247-55. PubMed ID: 11093185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of the composition of the binder bridges in matrix granules prepared with a small-scale high-shear granulator.
    Bajdik J; Baki G; Szent-Királlyi Z; Knop K; Kleinebudde P; Pintye-Hódi K
    J Pharm Biomed Anal; 2008 Nov; 48(3):694-701. PubMed ID: 18774256
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of hydroxypropyl methylcellulose molecular weight on supramolecular structures and properties of HPMC/sodium citrate photophobic films.
    Zhang L; Lu YQ; Yu YX; Li Q; Qian JY; He XL
    Int J Biol Macromol; 2019 Sep; 137():1013-1019. PubMed ID: 31299251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Properties of novel hydroxypropyl methylcellulose films containing chitosan nanoparticles.
    de Moura MR; Avena-Bustillos RJ; McHugh TH; Krochta JM; Mattoso LH
    J Food Sci; 2008 Sep; 73(7):N31-7. PubMed ID: 18803724
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles.
    Bilbao-Sáinz C; Avena-Bustillos RJ; Wood DF; Williams TG; McHugh TH
    J Agric Food Chem; 2010 Mar; 58(6):3753-60. PubMed ID: 20187652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film.
    Ding C; Zhang M; Li G
    Carbohydr Polym; 2015 Mar; 119():194-201. PubMed ID: 25563960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization and drug release investigation of amorphous drug-hydroxypropyl methylcellulose composites made via supercritical carbon dioxide assisted impregnation.
    Gong K; Rehman IU; Darr JA
    J Pharm Biomed Anal; 2008 Dec; 48(4):1112-9. PubMed ID: 18922658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of plasticizer on drug crystallinity of hydroxypropyl methylcellulose matrix film.
    Panda B; Parihar AS; Mallick S
    Int J Biol Macromol; 2014 Jun; 67():295-302. PubMed ID: 24685464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studies on the interaction between water and (hydroxypropyl)methylcellulose.
    Nokhodchi A; Ford JL; Rubinstein MH
    J Pharm Sci; 1997 May; 86(5):608-15. PubMed ID: 9145387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calorimetric studies of dissolution of hydroxypropyl methylcellulose E5 (HPMC E5) in water.
    Joshi HN; Wilson TD
    J Pharm Sci; 1993 Oct; 82(10):1033-8. PubMed ID: 8254488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a HPMC-based controlled release formulation with hot melt extrusion (HME).
    Ma D; Djemai A; Gendron CM; Xi H; Smith M; Kogan J; Li L
    Drug Dev Ind Pharm; 2013 Jul; 39(7):1070-83. PubMed ID: 22803806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physicochemical properties and bioactivity of nisin-containing cross-linked hydroxypropylmethylcellulose films.
    Sebti I; Delves-Broughton J; Coma V
    J Agric Food Chem; 2003 Oct; 51(22):6468-74. PubMed ID: 14558764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative analysis of zaleplon complexation with cyclodextrins and hydrophilic polymers in solution and in solid state.
    Jablan J; Szalontai G; Jug M
    J Pharm Biomed Anal; 2012 Dec; 71():35-44. PubMed ID: 22898722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental Studies and Modeling of the Drying Kinetics of Multicomponent Polymer Films.
    Velaga SP; Nikjoo D; Vuddanda PR
    AAPS PharmSciTech; 2018 Jan; 19(1):425-435. PubMed ID: 28762212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydroxypropyl methylcellulose substituent analysis and rheological properties.
    Akinosho H; Hawkins S; Wicker L
    Carbohydr Polym; 2013 Oct; 98(1):276-81. PubMed ID: 23987345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of TEMPO-oxidized NFC on the mechanical, barrier properties and nisin release of hydroxypropyl methylcellulose bioactive films.
    Hassan EA; Fadel SM; Hassan ML
    Int J Biol Macromol; 2018 Jul; 113():616-622. PubMed ID: 29481954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.