These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 21273120)
1. Staphylococcus aureus ClpC is involved in protection of carbon-metabolizing enzymes from carbonylation during stationary growth phase. Chatterjee I; Maisonneuve E; Ezraty B; Herrmann M; Dukan S Int J Med Microbiol; 2011 Apr; 301(4):341-6. PubMed ID: 21273120 [TBL] [Abstract][Full Text] [Related]
2. Staphylococcus aureus ClpC ATPase is a late growth phase effector of metabolism and persistence. Chatterjee I; Schmitt S; Batzilla CF; Engelmann S; Keller A; Ring MW; Kautenburger R; Ziebuhr W; Hecker M; Preissner KT; Bischoff M; Proctor RA; Beck HP; Lenhof HP; Somerville GA; Herrmann M Proteomics; 2009 Mar; 9(5):1152-76. PubMed ID: 19253280 [TBL] [Abstract][Full Text] [Related]
3. Staphylococcus aureus ClpC is required for stress resistance, aconitase activity, growth recovery, and death. Chatterjee I; Becker P; Grundmeier M; Bischoff M; Somerville GA; Peters G; Sinha B; Harraghy N; Proctor RA; Herrmann M J Bacteriol; 2005 Jul; 187(13):4488-96. PubMed ID: 15968059 [TBL] [Abstract][Full Text] [Related]
4. Senescence of staphylococci: using functional genomics to unravel the roles of ClpC ATPase during late stationary phase. Chatterjee I; Neumayer D; Herrmann M Int J Med Microbiol; 2010 Feb; 300(2-3):130-6. PubMed ID: 19931487 [TBL] [Abstract][Full Text] [Related]
5. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH. Engels S; Schweitzer JE; Ludwig C; Bott M; Schaffer S Mol Microbiol; 2004 Apr; 52(1):285-302. PubMed ID: 15049827 [TBL] [Abstract][Full Text] [Related]
6. Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Frees D; Chastanet A; Qazi S; Sørensen K; Hill P; Msadek T; Ingmer H Mol Microbiol; 2004 Dec; 54(5):1445-62. PubMed ID: 15554981 [TBL] [Abstract][Full Text] [Related]
7. ClpC affects the intracellular survival capacity of Staphylococcus aureus in non-professional phagocytic cells. Gunaratnam G; Tuchscherr L; Elhawy MI; Bertram R; Eisenbeis J; Spengler C; Tschernig T; Löffler B; Somerville GA; Jacobs K; Herrmann M; Bischoff M Sci Rep; 2019 Nov; 9(1):16267. PubMed ID: 31700127 [TBL] [Abstract][Full Text] [Related]
8. Effect of anaerobic and stationary phase growth conditions on the heat shock and oxidative stress responses in Escherichia coli K-12. Díaz-Acosta A; Sandoval ML; Delgado-Olivares L; Membrillo-Hernández J Arch Microbiol; 2006 Jun; 185(6):429-38. PubMed ID: 16775749 [TBL] [Abstract][Full Text] [Related]
9. Small colony variants of Staphylococcus aureus reveal distinct protein profiles. Kriegeskorte A; König S; Sander G; Pirkl A; Mahabir E; Proctor RA; von Eiff C; Peters G; Becker K Proteomics; 2011 Jun; 11(12):2476-90. PubMed ID: 21595038 [TBL] [Abstract][Full Text] [Related]
10. Effect of clpP and clpC deletion on persister cell number in Staphylococcus aureus. Springer MT; Singh VK; Cheung AL; Donegan NP; Chamberlain NR J Med Microbiol; 2016 Aug; 65(8):848-857. PubMed ID: 27375177 [TBL] [Abstract][Full Text] [Related]
11. The ClpCP Complex Modulates Respiratory Metabolism in Staphylococcus aureus and Is Regulated in a SrrAB-Dependent Manner. Mashruwala AA; Eilers BJ; Fuchs AL; Norambuena J; Earle CA; van de Guchte A; Tripet BP; Copié V; Boyd JM J Bacteriol; 2019 Aug; 201(15):. PubMed ID: 31109995 [TBL] [Abstract][Full Text] [Related]
12. MecA, an adaptor protein necessary for ClpC chaperone activity. Schlothauer T; Mogk A; Dougan DA; Bukau B; Turgay K Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2306-11. PubMed ID: 12598648 [TBL] [Abstract][Full Text] [Related]
13. Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon. Fredriksson A; Ballesteros M; Dukan S; Nyström T J Bacteriol; 2005 Jun; 187(12):4207-13. PubMed ID: 15937182 [TBL] [Abstract][Full Text] [Related]
14. Heat-adaptation induced thermotolerance in Staphylococcus aureus: Influence of the alternative factor sigmaB. Cebrián G; Condón S; Mañas P Int J Food Microbiol; 2009 Nov; 135(3):274-80. PubMed ID: 19700216 [TBL] [Abstract][Full Text] [Related]
15. Staphylococcus aureus ClpC divergently regulates capsule via sae and codY in strain newman but activates capsule via codY in strain UAMS-1 and in strain Newman with repaired saeS. Luong TT; Sau K; Roux C; Sau S; Dunman PM; Lee CY J Bacteriol; 2011 Feb; 193(3):686-94. PubMed ID: 21131496 [TBL] [Abstract][Full Text] [Related]
16. The Staphylococcus aureus cidC gene encodes a pyruvate oxidase that affects acetate metabolism and cell death in stationary phase. Patton TG; Rice KC; Foster MK; Bayles KW Mol Microbiol; 2005 Jun; 56(6):1664-74. PubMed ID: 15916614 [TBL] [Abstract][Full Text] [Related]
17. The SAV1322 gene from Staphylococcus aureus: genomic and proteomic approaches to identification and characterization of gene function. Kim JW; Kim HK; Kang GS; Kim IH; Kim HS; Lee YS; Yoo JI BMC Microbiol; 2016 Sep; 16(1):206. PubMed ID: 27599615 [TBL] [Abstract][Full Text] [Related]
18. Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival. Chastanet A; Prudhomme M; Claverys JP; Msadek T J Bacteriol; 2001 Dec; 183(24):7295-307. PubMed ID: 11717289 [TBL] [Abstract][Full Text] [Related]
19. Trapping and identification of cellular substrates of the Staphylococcus aureus ClpC chaperone. Graham JW; Lei MG; Lee CY J Bacteriol; 2013 Oct; 195(19):4506-16. PubMed ID: 23913326 [TBL] [Abstract][Full Text] [Related]
20. Enhanced post-stationary-phase survival of a clinical thymidine-dependent small-colony variant of Staphylococcus aureus results from lack of a functional tricarboxylic acid cycle. Chatterjee I; Herrmann M; Proctor RA; Peters G; Kahl BC J Bacteriol; 2007 Apr; 189(7):2936-40. PubMed ID: 17259321 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]