These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 21273209)

  • 1. Effects of ageing on cerebral haemodynamics assessed during respiratory manoeuvres.
    Dineen NE; Panerai RB; Brodie F; Robinson TG
    Age Ageing; 2011 Mar; 40(2):199-204. PubMed ID: 21273209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous estimates of dynamic cerebral autoregulation during transient hypocapnia and hypercapnia.
    Dineen NE; Brodie FG; Robinson TG; Panerai RB
    J Appl Physiol (1985); 2010 Mar; 108(3):604-13. PubMed ID: 20035062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of hypocapnia and the cerebral autoregulatory response on cerebrovascular resistance and apparent zero flow pressure during isoflurane anesthesia.
    McCulloch TJ; Turner MJ
    Anesth Analg; 2009 Apr; 108(4):1284-90. PubMed ID: 19299801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic cerebral autoregulation and baroreflex sensitivity during modest and severe step changes in arterial PCO2.
    Ainslie PN; Celi L; McGrattan K; Peebles K; Ogoh S
    Brain Res; 2008 Sep; 1230():115-24. PubMed ID: 18680730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral autoregulation and ageing.
    Yam AT; Lang EW; Lagopoulos J; Yip K; Griffith J; Mudaliar Y; Dorsch NW
    J Clin Neurosci; 2005 Aug; 12(6):643-6. PubMed ID: 16098757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous fluctuations in cerebral blood flow regulation: contribution of PaCO2.
    Panerai RB; Dineen NE; Brodie FG; Robinson TG
    J Appl Physiol (1985); 2010 Dec; 109(6):1860-8. PubMed ID: 20884837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of incremental levels of continuous positive airway pressure on cerebral blood flow velocity in healthy adult humans.
    Scala R; Turkington PM; Wanklyn P; Bamford J; Elliott MW
    Clin Sci (Lond); 2003 Jun; 104(6):633-9. PubMed ID: 12580765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlations among critical closing pressure, pulsatility index and cerebrovascular resistance.
    Hsu HY; Chern CM; Kuo JS; Kuo TB; Chen YT; Hu HH
    Ultrasound Med Biol; 2004 Oct; 30(10):1329-35. PubMed ID: 15582232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of oxygen on dynamic cerebral autoregulation: critical role of hypocapnia.
    Ogoh S; Nakahara H; Ainslie PN; Miyamoto T
    J Appl Physiol (1985); 2010 Mar; 108(3):538-43. PubMed ID: 20056845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of age and coronary artery disease on cerebrovascular reactivity to carbon dioxide in humans.
    Galvin SD; Celi LA; Thomas KN; Clendon TR; Galvin IF; Bunton RW; Ainslie PN
    Anaesth Intensive Care; 2010 Jul; 38(4):710-7. PubMed ID: 20715736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral vasomotor reactivity during hypo- and hypercapnia across the adult lifespan.
    Tomoto T; Riley J; Turner M; Zhang R; Tarumi T
    J Cereb Blood Flow Metab; 2020 Mar; 40(3):600-610. PubMed ID: 30764704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic cerebral autoregulation assessed by respiratory manoeuvres in non-insulin-treated Type 2 diabetes mellitus.
    Huq R; Philbey CE; Mistri AK; Panerai RB; Robinson TG
    Diabet Med; 2012 May; 29(5):609-13. PubMed ID: 22004530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The response of cerebral blood flow and systemic arterial blood pressure to hypercapnia and hypocapnia in humans].
    Kulikov VP; Kuznetsova DV
    Patol Fiziol Eksp Ter; 2013; (1):41-4. PubMed ID: 23805713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography.
    Ito H; Ibaraki M; Kanno I; Fukuda H; Miura S
    J Cereb Blood Flow Metab; 2005 Jul; 25(7):852-7. PubMed ID: 15716851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A study on shifts of cerebral autoregualtion following end-tidal CO2 by critical closing pressure].
    Gao QC; Chen XM; Chen YX; Huang RX
    Zhonghua Yi Xue Za Zhi; 2005 Jun; 85(22):1542-6. PubMed ID: 16179114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demographic and Systemic Hemodynamic Influences in Mechanisms of Cerebrovascular Regulation in Healthy Adults.
    Madureira J; Castro P; Azevedo E
    J Stroke Cerebrovasc Dis; 2017 Mar; 26(3):500-508. PubMed ID: 28038898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of cerebral hemodynamic parameters using pulsatile versus non-pulsatile cerebral blood outflow models.
    Uryga A; Kasprowicz M; Calviello L; Diehl RR; Kaczmarska K; Czosnyka M
    J Clin Monit Comput; 2019 Feb; 33(1):85-94. PubMed ID: 29619647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-week normobaric intermittent-hypoxic exposures stabilize cerebral perfusion during hypocapnia and hypercapnia.
    Zhang P; Shi X; Downey HF
    Exp Biol Med (Maywood); 2015 Jul; 240(7):961-8. PubMed ID: 25504012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypocapnia induced by involuntary hyperventilation during mental arithmetic reduces cerebral blood flow velocity.
    Debreczeni R; Amrein I; Kamondi A; Szirmai I
    Tohoku J Exp Med; 2009 Feb; 217(2):147-54. PubMed ID: 19212108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer function analysis of cerebral autoregulation dynamics during jaw movements.
    Sakagami J; Ono T; Hasegawa Y; Hori K; Zhang M; Maeda Y
    J Dent Res; 2011 Jan; 90(1):71-6. PubMed ID: 20924060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.