These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 21273261)
1. In vivo assessment of bone ingrowth potential of three-dimensional e-beam produced implant surfaces and the effect of additional treatment by acid etching and hydroxyapatite coating. Biemond JE; Hannink G; Jurrius AM; Verdonschot N; Buma P J Biomater Appl; 2012 Mar; 26(7):861-75. PubMed ID: 21273261 [TBL] [Abstract][Full Text] [Related]
2. Osseointegration of a hydroxyapatite-coated multilayered mesh stem. Kusakabe H; Sakamaki T; Nihei K; Oyama Y; Yanagimoto S; Ichimiya M; Kimura J; Toyama Y Biomaterials; 2004 Jul; 25(15):2957-69. PubMed ID: 14967528 [TBL] [Abstract][Full Text] [Related]
3. Bone response adjacent to calcium phosphate electrostatic spray deposition coated implants: an experimental study in goats. Manders PJ; Wolke JG; Jansen JA Clin Oral Implants Res; 2006 Oct; 17(5):548-53. PubMed ID: 16958695 [TBL] [Abstract][Full Text] [Related]
4. Effect of glycerol-L-lactide coating polymer on bone ingrowth of bFGF-coated hydroxyapatite implants. Alt V; Pfefferle HJ; Kreuter J; Stahl JP; Pavlidis T; Meyer C; Mockwitz J; Wenisch S; Schnettler R J Control Release; 2004 Sep; 99(1):103-11. PubMed ID: 15342184 [TBL] [Abstract][Full Text] [Related]
5. Glycerol-l-lactide coating polymer leads to delay in bone ingrowth in hydroxyapatite implants. Schnettler R; Pfefferle HJ; Kilian O; Heiss C; Kreuter J; Lommel D; Pavlidis T; Stahl JP; Meyer C; Wenisch S; Alt V J Control Release; 2005 Aug; 106(1-2):154-61. PubMed ID: 15936110 [TBL] [Abstract][Full Text] [Related]
6. Comparison of enhancement of bone ingrowth into hydroxyapatite ceramics with highly and poorly interconnected pores by electrical polarization. Wang W; Itoh S; Tanaka Y; Nagai A; Yamashita K Acta Biomater; 2009 Oct; 5(8):3132-40. PubMed ID: 19426842 [TBL] [Abstract][Full Text] [Related]
7. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo. Lin A; Wang CJ; Kelly J; Gubbi P; Nishimura I Int J Oral Maxillofac Implants; 2009; 24(5):808-16. PubMed ID: 19865620 [TBL] [Abstract][Full Text] [Related]
8. Bone bonding to hydroxyapatite and titanium surfaces on femoral stems retrieved from human subjects at autopsy. Porter AE; Taak P; Hobbs LW; Coathup MJ; Blunn GW; Spector M Biomaterials; 2004 Sep; 25(21):5199-208. PubMed ID: 15109844 [TBL] [Abstract][Full Text] [Related]
9. Assessment of bone ingrowth potential of biomimetic hydroxyapatite and brushite coated porous E-beam structures. Biemond JE; Eufrásio TS; Hannink G; Verdonschot N; Buma P J Mater Sci Mater Med; 2011 Apr; 22(4):917-25. PubMed ID: 21327405 [TBL] [Abstract][Full Text] [Related]
10. Effect of hydroxyapatite coating crystallinity on dissolution and osseointegration in vivo. Xue W; Liu X; Zheng X; Ding C J Biomed Mater Res A; 2005 Sep; 74(4):553-61. PubMed ID: 16025491 [TBL] [Abstract][Full Text] [Related]
11. In vivo osseointegration of nano-designed composite coatings on titanium implants. Facca S; Lahiri D; Fioretti F; Messadeq N; Mainard D; Benkirane-Jessel N; Agarwal A ACS Nano; 2011 Jun; 5(6):4790-9. PubMed ID: 21591801 [TBL] [Abstract][Full Text] [Related]
12. Effect of hydroxyapatite/tricalcium-phosphate coating on osseointegration of plasma-sprayed titanium alloy implants. Stewart M; Welter JF; Goldberg VM J Biomed Mater Res A; 2004 Apr; 69(1):1-10. PubMed ID: 14999745 [TBL] [Abstract][Full Text] [Related]
13. In vivo evaluation of hydroxyapatite coatings of different crystallinities. Oh S; Tobin E; Yang Y; Carnes DL; Ong JL Int J Oral Maxillofac Implants; 2005; 20(5):726-31. PubMed ID: 16274146 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo. Ong JL; Carnes DL; Bessho K Biomaterials; 2004 Aug; 25(19):4601-6. PubMed ID: 15120505 [TBL] [Abstract][Full Text] [Related]
15. In vivo performance of a modified CSTi dental implant coating. Story BJ; Wagner WR; Gaisser DM; Cook SD; Rust-Dawicki AM Int J Oral Maxillofac Implants; 1998; 13(6):749-57. PubMed ID: 9857585 [TBL] [Abstract][Full Text] [Related]
16. Biological assessment of the bone-screw interface after insertion of uncoated and hydroxyapatite-coated pedicular screws in the osteopenic sheep. Fini M; Giavaresi G; Greggi T; Martini L; Aldini NN; Parisini P; Giardino R J Biomed Mater Res A; 2003 Jul; 66(1):176-83. PubMed ID: 12833444 [TBL] [Abstract][Full Text] [Related]
17. Biological performance of chemical hydroxyapatite coating associated with implant surface modification by laser beam: biomechanical study in rabbit tibias. Faeda RS; Tavares HS; Sartori R; Guastaldi AC; Marcantonio E J Oral Maxillofac Surg; 2009 Aug; 67(8):1706-15. PubMed ID: 19615586 [TBL] [Abstract][Full Text] [Related]
18. Ability of zirconia double coated with titanium and hydroxyapatite to bond to bone under load-bearing conditions. Suzuki T; Fujibayashi S; Nakagawa Y; Noda I; Nakamura T Biomaterials; 2006 Mar; 27(7):996-1002. PubMed ID: 16115676 [TBL] [Abstract][Full Text] [Related]
19. Role of hydroxyapatite coating in resisting wear particle migration and osteolysis around acetabular components. Coathup MJ; Blackburn J; Goodship AE; Cunningham JL; Smith T; Blunn GW Biomaterials; 2005 Jul; 26(19):4161-9. PubMed ID: 15664643 [TBL] [Abstract][Full Text] [Related]
20. Comparison of plasma-sprayed hydroxyapatite coatings and zirconia-reinforced hydroxyapatite composite coatings: in vivo study. Lee TM; Yang CY; Chang E; Tsai RS J Biomed Mater Res A; 2004 Dec; 71(4):652-60. PubMed ID: 15505828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]