These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21273263)

  • 1. Enhanced mechanical properties and in vitro cell response of surface mechanical attrition treated pure titanium.
    Zhao C; Han P; Ji W; Zhang X
    J Biomater Appl; 2012 Aug; 27(2):113-8. PubMed ID: 21273263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical titanium surface textures affect osteoblastic functions.
    Zhao C; Cao P; Ji W; Han P; Zhang J; Zhang F; Jiang Y; Zhang X
    J Biomed Mater Res A; 2011 Dec; 99(4):666-75. PubMed ID: 21972107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced in-vitro osteoblastic functions on β-type titanium alloy using surface mechanical attrition treatment.
    Huang R; Zhang L; Huang L; Zhu J
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():688-697. PubMed ID: 30678957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the behaviors of mesenchymal stem cells by surface nanostructured titanium.
    Lai M; Cai K; Hu Y; Yang X; Liu Q
    Colloids Surf B Biointerfaces; 2012 Sep; 97():211-20. PubMed ID: 22609606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects.
    Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD
    Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomechanical properties of surface-modified titanium alloys for biomedical applications.
    Cáceres D; Munuera C; Ocal C; Jiménez JA; Gutiérrez A; López MF
    Acta Biomater; 2008 Sep; 4(5):1545-52. PubMed ID: 18499544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of heat treatment and oxygen doping on the mechanical properties and biocompatibility of titanium-niobium binary alloys.
    da Silva LM; Claro AP; Donato TA; Arana-Chavez VE; Moraes JC; Buzalaf MA; Grandini CR
    Artif Organs; 2011 May; 35(5):516-21. PubMed ID: 21595721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response.
    Divya Rani VV; Manzoor K; Menon D; Selvamurugan N; Nair SV
    Nanotechnology; 2009 May; 20(19):195101. PubMed ID: 19420629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Second-phase-dependent grain refinement in Ti-25Nb-3Mo-3Zr-2Sn alloy and its enhanced osteoblast response.
    Huang R; Zhuang H; Han Y
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():144-52. PubMed ID: 24411362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro osteoblast-like cell proliferation on nano-hydroxyapatite coatings with different morphologies on a titanium-niobium shape memory alloy.
    Xiong J; Li Y; Hodgson PD; Wen C
    J Biomed Mater Res A; 2010 Dec; 95(3):766-73. PubMed ID: 20725978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surface roughness of ground titanium on initial cell adhesion.
    Huang HH; Ho CT; Lee TH; Lee TL; Liao KK; Chen FL
    Biomol Eng; 2004 Nov; 21(3-5):93-7. PubMed ID: 15567102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure, mechanical properties and cytocompatibility of stable beta Ti-Mo-Ta sintered alloys.
    Delvat E; Gordin DM; Gloriant T; Duval JL; Nagel MD
    J Mech Behav Biomed Mater; 2008 Oct; 1(4):345-51. PubMed ID: 19627799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of the biomedical properties of titanium using SMAT and thermal oxidation.
    Wen M; Wen C; Hodgson P; Li Y
    Colloids Surf B Biointerfaces; 2014 Apr; 116():658-65. PubMed ID: 24269052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the bioactivity of titanium after varied surface treatments using human osteosarcoma osteoblast cells: an in vitro study.
    Singh RG
    Int J Oral Maxillofac Implants; 2011; 26(5):998-1003. PubMed ID: 22010082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: Nanohydroxyapatite-silicone rubber composite.
    Thein-Han WW; Shah J; Misra RD
    Acta Biomater; 2009 Sep; 5(7):2668-79. PubMed ID: 19435616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface nanocrystallization of Ti-6Al-4V alloy: microstructural and mechanical characterization.
    Pi Y; Agoda-Tandjawa G; Potiron S; Demangel C; Retraint D; Benhayoune H
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4892-7. PubMed ID: 22905548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment.
    MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL
    Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming.
    Hollander DA; von Walter M; Wirtz T; Sellei R; Schmidt-Rohlfing B; Paar O; Erli HJ
    Biomaterials; 2006 Mar; 27(7):955-63. PubMed ID: 16115681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface engineering of titanium with potassium hydroxide and its effects on the growth behavior of mesenchymal stem cells.
    Cai K; Lai M; Yang W; Hu R; Xin R; Liu Q; Sung KL
    Acta Biomater; 2010 Jun; 6(6):2314-21. PubMed ID: 19963080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.