These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21273340)

  • 1. Changing the substrate specificity of P450cam towards diphenylmethane by semi-rational enzyme engineering.
    Hoffmann G; Bönsch K; Greiner-Stöffele T; Ballschmiter M
    Protein Eng Des Sel; 2011 May; 24(5):439-46. PubMed ID: 21273340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the substrate specificity by engineering the active site of cytochrome P450cam: a rational approach.
    Manna SK; Mazumdar S
    Dalton Trans; 2010 Mar; 39(12):3115-23. PubMed ID: 20221546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam.
    Bell SG; Chen X; Sowden RJ; Xu F; Williams JN; Wong LL; Rao Z
    J Am Chem Soc; 2003 Jan; 125(3):705-14. PubMed ID: 12526670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-activity correlations in pentachlorobenzene oxidation by engineered cytochrome P450cam.
    Xu F; Bell SG; Rao Z; Wong LL
    Protein Eng Des Sel; 2007 Oct; 20(10):473-80. PubMed ID: 17962225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role of the heme-7-propionate side chain in cytochrome P450cam as a gate for regulating the access of water molecules to the substrate-binding site.
    Hayashi T; Harada K; Sakurai K; Shimada H; Hirota S
    J Am Chem Soc; 2009 Feb; 131(4):1398-400. PubMed ID: 19133773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared spectroscopic and mutational studies on putidaredoxin-induced conformational changes in ferrous CO-P450cam.
    Nagano S; Shimada H; Tarumi A; Hishiki T; Kimata-Ariga Y; Egawa T; Suematsu M; Park SY; Adachi S; Shiro Y; Ishimura Y
    Biochemistry; 2003 Dec; 42(49):14507-14. PubMed ID: 14661963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations of glutamate-84 at the putative potassium-binding site affect camphor binding and oxidation by cytochrome p450cam.
    Westlake AC; Harford-Cross CF; Donovan J; Wong LL
    Eur J Biochem; 1999 Nov; 265(3):929-35. PubMed ID: 10518786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The catalytic activity of cytochrome P450cam towards styrene oxidation is increased by site-specific mutagenesis.
    Nickerson DP; Harford-Cross CF; Fulcher SR; Wong LL
    FEBS Lett; 1997 Mar; 405(2):153-6. PubMed ID: 9089281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the CYP101 system for in vivo oxidation of unnatural substrates.
    Bell SG; Harford-Cross CF; Wong LL
    Protein Eng; 2001 Oct; 14(10):797-802. PubMed ID: 11739899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dimerization of Pseudomonas putida cytochrome P450cam: practical consequences and engineering of a monomeric enzyme.
    Nickerson DP; Wong LL
    Protein Eng; 1997 Dec; 10(12):1357-61. PubMed ID: 9542996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of broad specificity P450CAM variants by primary screening against indole as substrate.
    Celik A; Speight RE; Turner NJ
    Chem Commun (Camb); 2005 Aug; (29):3652-4. PubMed ID: 16027900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the regiospecificity and coupling of cytochrome P450cam: T185F mutant increases coupling and abolishes 3-hydroxynorcamphor product.
    Paulsen MD; Filipovic D; Sligar SG; Ornstein RL
    Protein Sci; 1993 Mar; 2(3):357-65. PubMed ID: 8453374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Car-Parrinello molecular dynamics/molecular mechanics (CPMD/MM) simulation study of coupling and uncoupling mechanisms of Cytochrome P450cam.
    Lian P; Li J; Wang DQ; Wei DQ
    J Phys Chem B; 2013 Jul; 117(26):7849-56. PubMed ID: 23742631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryoreduction EPR and 13C, 19F ENDOR study of substrate-bound substates and solvent kinetic isotope effects in the catalytic cycle of cytochrome P450cam and its T252A mutant.
    Kim SH; Yang TC; Perera R; Jin S; Bryson TA; Sono M; Davydov R; Dawson JH; Hoffman BM
    Dalton Trans; 2005 Nov; (21):3464-9. PubMed ID: 16234926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A recombinant Escherichia coli whole cell biocatalyst harboring a cytochrome P450cam monooxygenase system coupled with enzymatic cofactor regeneration.
    Mouri T; Michizoe J; Ichinose H; Kamiya N; Goto M
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):514-20. PubMed ID: 16421717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural stability and dynamics of hydrogenated and perdeuterated cytochrome P450cam (CYP101).
    Meilleur F; Contzen J; Myles DA; Jung C
    Biochemistry; 2004 Jul; 43(27):8744-53. PubMed ID: 15236583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of two surface residues near the access channel in the substrate recognition by cytochrome P450cam.
    Behera RK; Mazumdar S
    Biophys Chem; 2008 Jun; 135(1-3):1-6. PubMed ID: 18395959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the affinity and activity of CYP101D2 for hydrophobic substrates.
    Bell SG; Yang W; Dale A; Zhou W; Wong LL
    Appl Microbiol Biotechnol; 2013 May; 97(9):3979-90. PubMed ID: 22820521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering substrate recognition in catalysis by cytochrome P450cam.
    Bell SG; Chen X; Xu F; Rao Z; Wong LL
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):558-62. PubMed ID: 12773156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.