BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21273438)

  • 1. Tuning the period of the mammalian circadian clock: additive and independent effects of CK1εTau and Fbxl3Afh mutations on mouse circadian behavior and molecular pacemaking.
    Maywood ES; Chesham JE; Meng QJ; Nolan PM; Loudon AS; Hastings MH
    J Neurosci; 2011 Jan; 31(4):1539-44. PubMed ID: 21273438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Tau mutation of casein kinase 1ε sets the period of the mammalian pacemaker via regulation of Period1 or Period2 clock proteins.
    Maywood ES; Chesham JE; Smyllie NJ; Hastings MH
    J Biol Rhythms; 2014 Apr; 29(2):110-8. PubMed ID: 24682205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation.
    Anand SN; Maywood ES; Chesham JE; Joynson G; Banks GT; Hastings MH; Nolan PM
    J Neurosci; 2013 Apr; 33(17):7145-53. PubMed ID: 23616524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined Pharmacological and Genetic Manipulations Unlock Unprecedented Temporal Elasticity and Reveal Phase-Specific Modulation of the Molecular Circadian Clock of the Mouse Suprachiasmatic Nucleus.
    Patton AP; Chesham JE; Hastings MH
    J Neurosci; 2016 Sep; 36(36):9326-41. PubMed ID: 27605609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delayed Cryptochrome Degradation Asymmetrically Alters the Daily Rhythm in Suprachiasmatic Clock Neuron Excitability.
    Wegner S; Belle MDC; Hughes ATL; Diekman CO; Piggins HD
    J Neurosci; 2017 Aug; 37(33):7824-7836. PubMed ID: 28698388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of core circadian feedback loop in suprachiasmatic nucleus of mCry1-luc transgenic reporter mouse.
    Maywood ES; Drynan L; Chesham JE; Edwards MD; Dardente H; Fustin JM; Hazlerigg DG; O'Neill JS; Codner GF; Smyllie NJ; Brancaccio M; Hastings MH
    Proc Natl Acad Sci U S A; 2013 Jun; 110(23):9547-52. PubMed ID: 23690615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced light-entrained activity onsets and restored free-running suprachiasmatic nucleus circadian rhythms in per2/dec mutant mice.
    Bode B; Taneja R; Rossner MJ; Oster H
    Chronobiol Int; 2011 Nov; 28(9):737-50. PubMed ID: 22080784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian pacemaking in cells and circuits of the suprachiasmatic nucleus.
    Hastings MH; Brancaccio M; Maywood ES
    J Neuroendocrinol; 2014 Jan; 26(1):2-10. PubMed ID: 24329967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early doors (Edo) mutant mouse reveals the importance of period 2 (PER2) PAS domain structure for circadian pacemaking.
    Militi S; Maywood ES; Sandate CR; Chesham JE; Barnard AR; Parsons MJ; Vibert JL; Joynson GM; Partch CL; Hastings MH; Nolan PM
    Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2756-61. PubMed ID: 26903623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhythmic expression of cryptochrome induces the circadian clock of arrhythmic suprachiasmatic nuclei through arginine vasopressin signaling.
    Edwards MD; Brancaccio M; Chesham JE; Maywood ES; Hastings MH
    Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2732-7. PubMed ID: 26903624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits.
    Maywood ES; Chesham JE; O'Brien JA; Hastings MH
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14306-11. PubMed ID: 21788520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptochrome proteins regulate the circadian intracellular behavior and localization of PER2 in mouse suprachiasmatic nucleus neurons.
    Smyllie NJ; Bagnall J; Koch AA; Niranjan D; Polidarova L; Chesham JE; Chin JW; Partch CL; Loudon ASI; Hastings MH
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetics and neurobiology of circadian clocks in mammals.
    Siepka SM; Yoo SH; Park J; Lee C; Takahashi JS
    Cold Spring Harb Symp Quant Biol; 2007; 72():251-259. PubMed ID: 18419282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential contributions of intra-cellular and inter-cellular mechanisms to the spatial and temporal architecture of the suprachiasmatic nucleus circadian circuitry in wild-type, cryptochrome-null and vasoactive intestinal peptide receptor 2-null mutant mice.
    Pauls S; Foley NC; Foley DK; LeSauter J; Hastings MH; Maywood ES; Silver R
    Eur J Neurosci; 2014 Aug; 40(3):2528-40. PubMed ID: 24891292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Causal involvement of mammalian-type cryptochrome in the circadian cuticle deposition rhythm in the bean bug Riptortus pedestris.
    Ikeno T; Katagiri C; Numata H; Goto SG
    Insect Mol Biol; 2011 Jun; 20(3):409-15. PubMed ID: 21435062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of cell-autonomous circadian oscillation of Cry transcription in circadian rhythm generation.
    Matsumura R; Yoshimi K; Sawai Y; Yasumune N; Kajihara K; Maejima T; Koide T; Node K; Akashi M
    Cell Rep; 2022 Apr; 39(3):110703. PubMed ID: 35443162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus.
    Ono D; Honma S; Honma K
    Nat Commun; 2013; 4():1666. PubMed ID: 23575670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice.
    Maywood ES; Elliott TS; Patton AP; Krogager TP; Chesham JE; Ernst RJ; Beránek V; Brancaccio M; Chin JW; Hastings MH
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):E12388-E12397. PubMed ID: 30487216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRYPTOCHROMES confer robustness, not rhythmicity, to circadian timekeeping.
    Putker M; Wong DCS; Seinkmane E; Rzechorzek NM; Zeng A; Hoyle NP; Chesham JE; Edwards MD; Feeney KA; Fischer R; Peschel N; Chen KF; Vanden Oever M; Edgar RS; Selby CP; Sancar A; O'Neill JS
    EMBO J; 2021 Apr; 40(7):e106745. PubMed ID: 33491228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cry1-/- circadian rhythmicity depends on SCN intercellular coupling.
    Evans JA; Pan H; Liu AC; Welsh DK
    J Biol Rhythms; 2012 Dec; 27(6):443-52. PubMed ID: 23223370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.