BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 21273706)

  • 1. Molecular characterization and functional analysis of elite genes in wheat and its related species.
    Wang J; Qi P; Wei Y; Liu D; Fedak G; Zheng Y
    J Genet; 2010 Dec; 89(4):539-54. PubMed ID: 21273706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungus-originated genes in the genomes of cereal and pasture grasses acquired through ancient lateral transfer.
    Shinozuka H; Shinozuka M; de Vries EM; Sawbridge TI; Spangenberg GC; Cocks BG
    Sci Rep; 2020 Nov; 10(1):19883. PubMed ID: 33199756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorus digestibility and metabolisable energy concentrations of contemporary wheat, barley, rye and triticale genotypes fed to growing pigs.
    Schemmer R; Spillner C; Südekum KH
    Arch Anim Nutr; 2020 Dec; 74(6):429-444. PubMed ID: 32962441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transferability of SSR markers among wheat, rye, and triticale.
    Kuleung C; Baenziger PS; Dweikat I
    Theor Appl Genet; 2004 Apr; 108(6):1147-50. PubMed ID: 15067402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wheat and Barley: Acclimatization to Abiotic and Biotic Stress.
    Hura T
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33050008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ileal starch digestibility of different cereal grains fed to growing pigs.
    Rosenfelder-Kuon P; Strang EJP; Spindler HK; Eklund M; Mosenthin R
    J Anim Sci; 2017 Jun; 95(6):2711-2717. PubMed ID: 28727064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular markers as a complementary tool in risk assessments: quantifying interspecific gene flow from triticale to spring wheat and durum wheat.
    Kavanagh VB; Hills MJ; Goyal A; Randhawa HS; Topinka AK; Eudes F; Hall LM
    Transgenic Res; 2013 Aug; 22(4):767-78. PubMed ID: 23389776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of wheat-Secale africanum chromosome 5R(a) derivatives carrying Secale specific genes for grain hardness.
    Li G; Gao D; La S; Wang H; Li J; He W; Yang E; Yang Z
    Planta; 2016 May; 243(5):1203-12. PubMed ID: 26883668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of ω-secalin genes from rye, triticale, and a wheat 1BL/1RS translocation line.
    Jiang QT; Wei YM; Andre L; Lu ZX; Pu ZE; Peng YY; Zheng YL
    J Appl Genet; 2010; 51(4):403-11. PubMed ID: 21063058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ and in vitro ruminal starch degradation of grains from different rye, triticale and barley genotypes.
    Krieg J; Seifried N; Steingass H; Rodehutscord M
    Animal; 2017 Oct; 11(10):1745-1753. PubMed ID: 28219468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses.
    Bhave M; Morris CF
    Plant Mol Biol; 2008 Feb; 66(3):205-19. PubMed ID: 18049798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yield stability of hybrids versus lines in wheat, barley, and triticale.
    Mühleisen J; Piepho HP; Maurer HP; Longin CF; Reif JC
    Theor Appl Genet; 2014 Feb; 127(2):309-16. PubMed ID: 24162154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increase in transcript accumulation of Psy1 and e-Lcy genes in grain development is associated with differences in seed carotenoid content between durum wheat and tritordeum.
    Rodríguez-Suárez C; Mellado-Ortega E; Hornero-Méndez D; Atienza SG
    Plant Mol Biol; 2014 Apr; 84(6):659-73. PubMed ID: 24306494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of grain characters in temperate grasses reveals distinctive patterns of endosperm organization associated with grain shape.
    Hands P; Kourmpetli S; Sharples D; Harris RG; Drea S
    J Exp Bot; 2012 Oct; 63(17):6253-66. PubMed ID: 23081982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of MAPK and MAPKK gene families in wheat and related Triticeae species.
    Goyal RK; Tulpan D; Chomistek N; González-Peña Fundora D; West C; Ellis BE; Frick M; Laroche A; Foroud NA
    BMC Genomics; 2018 Mar; 19(1):178. PubMed ID: 29506469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GrainGenes: centralized small grain resources and digital platform for geneticists and breeders.
    Blake VC; Woodhouse MR; Lazo GR; Odell SG; Wight CP; Tinker NA; Wang Y; Gu YQ; Birkett CL; Jannink JL; Matthews DE; Hane DL; Michel SL; Yao E; Sen TZ
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31210272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and Sequencing of Chromosome Arm 7RS of Rye,
    Petereit J; Tay Fernandez C; Marsh JI; Bayer PE; Thomas WJW; Aliyeva AJ; Karafiátová M; Doležel J; Batley J; Edwards D
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evolution of the seed storage proteins of barley, rye and wheat.
    Kreis M; Forde BG; Rahman S; Miflin BJ; Shewry PR
    J Mol Biol; 1985 Jun; 183(3):499-502. PubMed ID: 4020867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome 5H of Hordeum species involved in reduction in grain hardness in wheat genetic background.
    Yanaka M; Takata K; Terasawa Y; Ikeda TM
    Theor Appl Genet; 2011 Oct; 123(6):1013-8. PubMed ID: 21739140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome wide characterization of barley NAC transcription factors enables the identification of grain-specific transcription factors exclusive for the Poaceae family of monocotyledonous plants.
    Murozuka E; Massange-Sánchez JA; Nielsen K; Gregersen PL; Braumann I
    PLoS One; 2018; 13(12):e0209769. PubMed ID: 30592743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.