BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 21273706)

  • 21. Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale.
    Marulanda JJ; Mi X; Melchinger AE; Xu JL; Würschum T; Longin CF
    Theor Appl Genet; 2016 Oct; 129(10):1901-13. PubMed ID: 27389871
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome merger: from sequence rearrangements in triticale to their elimination in wheat-rye addition lines.
    Bento M; Gustafson P; Viegas W; Silva M
    Theor Appl Genet; 2010 Aug; 121(3):489-97. PubMed ID: 20383487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Grain Disarticulation in Wild Wheat and Barley.
    Pourkheirandish M; Komatsuda T
    Plant Cell Physiol; 2022 Nov; 63(11):1584-1591. PubMed ID: 35765920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Earlier onset of DNA fragmentation in leaves of wheat compared to barley and rye.
    Liljeroth E; Bryngelsson T
    Hereditas; 2002; 136(2):108-15. PubMed ID: 12369095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boosting Triticeae crop grain yield by manipulating molecular modules to regulate inflorescence architecture: insights and knowledge from other cereal crops.
    Zhang Y; Shen C; Shi J; Shi J; Zhang D
    J Exp Bot; 2024 Jan; 75(1):17-35. PubMed ID: 37935244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Profiling of Barley, Wheat, and Rye
    Kowalik S; Groszyk J
    Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569728
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights into Four
    Guérin C; Dupuits C; Mouzeyar S; Roche J
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36232974
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activity tests of alcohol dehydrogenases in wheat, rye and triticale.
    Leibenguth F
    Experientia; 1977 Nov; 33(11):1434-6. PubMed ID: 923699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An efficient Oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae.
    Li G; Zhang T; Yu Z; Wang H; Yang E; Yang Z
    Plant J; 2021 Feb; 105(4):978-993. PubMed ID: 33210785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative Analysis of Coding and Non-Coding Features within Insect Tolerance Loci in Wheat with Their Homologs in Cereal Genomes.
    Muslu T; Akpinar BA; Biyiklioglu-Kaya S; Yuce M; Budak H
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mitochondrial atpA/atp9 co-transcript in wheat and triticale: RNA processing depends on the nuclear genotype.
    Laser B; Kück U
    Curr Genet; 1995 Dec; 29(1):50-7. PubMed ID: 8595658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of grain yield stability of tritipyrum as a novel cereal in comparison with triticale lines and bread wheat varieties through univariate and multivariate parametric methods.
    Farokhzadeh S; Shahsavand Hassani H; Mohammadi-Nejad G; Zinati Z
    PLoS One; 2022; 17(9):e0274588. PubMed ID: 36174006
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-term breeding progress of yield, yield-related, and disease resistance traits in five cereal crops of German variety trials.
    Laidig F; Feike T; Klocke B; Macholdt J; Miedaner T; Rentel D; Piepho HP
    Theor Appl Genet; 2021 Dec; 134(12):3805-3827. PubMed ID: 34652455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function.
    Boyko E; Kalendar R; Korzun V; Fellers J; Korol A; Schulman AH; Gill BS
    Plant Mol Biol; 2002; 48(5-6):767-90. PubMed ID: 11999849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum).
    Wiebe K; Harris NS; Faris JD; Clarke JM; Knox RE; Taylor GJ; Pozniak CJ
    Theor Appl Genet; 2010 Oct; 121(6):1047-58. PubMed ID: 20559817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rearrangement of the genes for the biosynthesis of benzoxazinones in the evolution of Triticeae species.
    Nomura T; Ishihara A; Imaishi H; Ohkawa H; Endo TR; Iwamura H
    Planta; 2003 Sep; 217(5):776-82. PubMed ID: 12734755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cereal prolamin evolution and homology revealed by sequence analysis.
    Bietz JA
    Biochem Genet; 1982 Dec; 20(11-12):1039-53. PubMed ID: 7165690
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolutionarily conserved partial gene duplication in the Triticeae tribe of grasses confers pathogen resistance.
    Rajaraman J; Douchkov D; Lück S; Hensel G; Nowara D; Pogoda M; Rutten T; Meitzel T; Brassac J; Höfle C; Hückelhoven R; Klinkenberg J; Trujillo M; Bauer E; Schmutzer T; Himmelbach A; Mascher M; Lazzari B; Stein N; Kumlehn J; Schweizer P
    Genome Biol; 2018 Aug; 19(1):116. PubMed ID: 30111359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying variation for N-use efficiency and associated traits in amphidiploids derived from hybrids of bread wheat and the genera Aegilops, Secale, Thinopyrum and Triticum.
    Nehe A; King J; King IP; Murchie EH; Foulkes MJ
    PLoS One; 2022; 17(4):e0266924. PubMed ID: 35427365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generation and molecular marker and cytological characterization of wheat -
    Singh AK; Zhang P; Dong C; Li J; Singh S; Trethowan R; Sharp P
    Genome; 2021 Jan; 64(1):29-38. PubMed ID: 33002386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.