These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21274536)

  • 1. The surface finite element method for pattern formation on evolving biological surfaces.
    Barreira R; Elliott CM; Madzvamuse A
    J Math Biol; 2011 Dec; 63(6):1095-119. PubMed ID: 21274536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exhibiting cross-diffusion-induced patterns for reaction-diffusion systems on evolving domains and surfaces.
    Madzvamuse A; Barreira R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043307. PubMed ID: 25375623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solving the advection-diffusion equations in biological contexts using the cellular Potts model.
    Dan D; Mueller C; Chen K; Glazier JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041909. PubMed ID: 16383422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Curvature, Growth, and Anisotropy on the Evolution of Turing Patterns on Growing Manifolds.
    Krause AL; Ellis MA; Van Gorder RA
    Bull Math Biol; 2019 Mar; 81(3):759-799. PubMed ID: 30511207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Lagrangian particle method for reaction-diffusion systems on deforming surfaces.
    Bergdorf M; Sbalzarini IF; Koumoutsakos P
    J Math Biol; 2010 Nov; 61(5):649-63. PubMed ID: 20020130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processing textured surfaces via anisotropic geometric diffusion.
    Clarenz U; Diewald U; Rumpf M
    IEEE Trans Image Process; 2004 Feb; 13(2):248-61. PubMed ID: 15376945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of the parameterised finite element method to robustly and efficiently evolve the edge of a moving cell.
    Neilson MP; Mackenzie JA; Webb SD; Insall RH
    Integr Biol (Camb); 2010 Nov; 2(11-12):687-95. PubMed ID: 20959932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical Study on an RBF-FD Tangent Plane Based Method for Convection-Diffusion Equations on Anisotropic Evolving Surfaces.
    Adil N; Xiao X; Feng X
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computation of a finite element-conformal tetrahedral mesh approximation for simulated soft tissue deformation using a deformable surface model.
    Weichert F; Schröder A; Landes C; Shamaa A; Awad SK; Walczak L; Müller H; Wagner M
    Med Biol Eng Comput; 2010 Jun; 48(6):597-610. PubMed ID: 20411435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of Morphogen and Tissue Dynamics.
    Multerer MD; Wittwer LD; Stopka A; Barac D; Lang C; Iber D
    Methods Mol Biol; 2018; 1863():223-250. PubMed ID: 30324601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiphase modelling of vascular tumour growth in two spatial dimensions.
    Hubbard ME; Byrne HM
    J Theor Biol; 2013 Jan; 316():70-89. PubMed ID: 23032218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust formation of morphogen gradients.
    Bollenbach T; Kruse K; Pantazis P; González-Gaitán M; Jülicher F
    Phys Rev Lett; 2005 Jan; 94(1):018103. PubMed ID: 15698137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling cell motility and chemotaxis with evolving surface finite elements.
    Elliott CM; Stinner B; Venkataraman C
    J R Soc Interface; 2012 Nov; 9(76):3027-44. PubMed ID: 22675164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A parameterization-based numerical method for isotropic and anisotropic diffusion smoothing on non-flat surfaces.
    Joshi AA; Shattuck DW; Thompson PM; Leahy RM
    IEEE Trans Image Process; 2009 Jun; 18(6):1358-65. PubMed ID: 19423447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods and framework for visualizing higher-order finite elements.
    Schroeder WJ; Bertel F; Malaterre M; Thompson D; Pébay PP; O'Bara R; Tendulkar S
    IEEE Trans Vis Comput Graph; 2006; 12(4):446-60. PubMed ID: 16805255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element approximation of a population spatial adaptation model.
    Galiano G; Velasco J
    Math Biosci Eng; 2013 Jun; 10(3):637-47. PubMed ID: 23906141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast computation of soft tissue thermal response under deformation based on fast explicit dynamics finite element algorithm for surgical simulation.
    Zhang J; Chauhan S
    Comput Methods Programs Biomed; 2020 Apr; 187():105244. PubMed ID: 31805458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A convenient scheme for coupling a finite element curvilinear mesh to a finite element voxel mesh: application to the heart.
    Hopenfeld B
    Biomed Eng Online; 2006 Nov; 5():60. PubMed ID: 17112373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient finite-difference strategy for sensitivity analysis of stochastic models of biochemical systems.
    Morshed M; Ingalls B; Ilie S
    Biosystems; 2017 Jan; 151():43-52. PubMed ID: 27914944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.