These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21274913)

  • 1. Towards gigahertz operation: ultrafast low turn-on organic diodes and rectifiers based on C60 and tungsten oxide.
    Im D; Moon H; Shin M; Kim J; Yoo S
    Adv Mater; 2011 Feb; 23(5):644-8. PubMed ID: 21274913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tungsten oxide buffer layers fabricated in an inert sol-gel process at room-temperature for blue organic light-emitting diodes.
    Höfle S; Bruns M; Strässle S; Feldmann C; Lemmer U; Colsmann A
    Adv Mater; 2013 Aug; 25(30):4113-6. PubMed ID: 23813694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel photoelectrochemical sensor based on PPIX-functionalized WO3-rGO nanohybrid-decorated ITO electrode for detecting cysteine.
    Sun B; Zhang K; Chen L; Guo L; Ai S
    Biosens Bioelectron; 2013 Jun; 44():48-51. PubMed ID: 23391706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of WO3 nanomaterials.
    Pandey NK; Tiwari K; Roy A
    J Biomed Nanotechnol; 2011 Feb; 7(1):156-7. PubMed ID: 21485849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strontium adsorption on tantalum-doped hexagonal tungsten oxide.
    Li X; Mu W; Xie X; Liu B; Tang H; Zhou G; Wei H; Jian Y; Luo S
    J Hazard Mater; 2014 Jan; 264():386-94. PubMed ID: 24316810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile and highly sensitive photoelectrochemical biosensing platform based on hierarchical architectured polydopamine/tungsten oxide nanocomposite film.
    Yu Y; Huang Z; Zhou Y; Zhang L; Liu A; Chen W; Lin J; Peng H
    Biosens Bioelectron; 2019 Feb; 126():1-6. PubMed ID: 30388548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective hydrodeoxygenation of cyclic vicinal diols to cyclic alcohols over tungsten oxide-palladium catalysts.
    Amada Y; Ota N; Tamura M; Nakagawa Y; Tomishige K
    ChemSusChem; 2014 Aug; 7(8):2185-92. PubMed ID: 24974957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations on the interactions of low molecular weight natural organic acids with C60.
    Sun Q; Xie HB; Chen J; Li X; Wang Z; Sheng L
    Chemosphere; 2013 Jul; 92(4):429-34. PubMed ID: 23411087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures.
    Brant J; Lecoanet H; Hotze M; Wiesner M
    Environ Sci Technol; 2005 Sep; 39(17):6343-51. PubMed ID: 16190186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoporous carbon nitride-tungsten oxide composites for enhanced photocatalytic hydrogen evolution.
    Kailasam K; Fischer A; Zhang G; Zhang J; Schwarze M; Schröder M; Wang X; Schomäcker R; Thomas A
    ChemSusChem; 2015 Apr; 8(8):1404-10. PubMed ID: 25801956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tungsten trioxide as a visible light photocatalyst for volatile organic carbon removal.
    Wicaksana Y; Liu S; Scott J; Amal R
    Molecules; 2014 Oct; 19(11):17747-62. PubMed ID: 25365299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remediation of 17-α-ethinylestradiol aqueous solution by photocatalysis and electrochemically-assisted photocatalysis using TiO2 and TiO2/WO3 electrodes irradiated by a solar simulator.
    Oliveira HG; Ferreira LH; Bertazzoli R; Longo C
    Water Res; 2015 Apr; 72():305-14. PubMed ID: 25238917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2-WO3 photoanodes.
    Georgieva J; Valova E; Armyanov S; Philippidis N; Poulios I; Sotiropoulos S
    J Hazard Mater; 2012 Apr; 211-212():30-46. PubMed ID: 22172459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoelectrochemical water oxidation on photoanodes fabricated with hexagonal nanoflower and nanoblock WO3.
    Wang N; Wang D; Li M; Shi J; Li C
    Nanoscale; 2014 Feb; 6(4):2061-6. PubMed ID: 24384843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of (WO3)n rectangular structures through a LMO-organic precursor route.
    Pang S; Jian F; Wang L
    Inorg Chem; 2008 Jan; 47(1):344-8. PubMed ID: 18052373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene oxide-Li(+)@C60 donor-acceptor composites for photoenergy conversion.
    Supur M; Kawashima Y; Ohkubo K; Sakai H; Hasobe T; Fukuzumi S
    Phys Chem Chem Phys; 2015 Jun; 17(24):15732-8. PubMed ID: 26013538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films.
    Su PG; Peng SL
    Talanta; 2015 Jan; 132():398-405. PubMed ID: 25476324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of nanocrystalline WO3 with a dicationic perylene bisimide: applications to molecular level solar water splitting.
    Ronconi F; Syrgiannis Z; Bonasera A; Prato M; Argazzi R; Caramori S; Cristino V; Bignozzi CA
    J Am Chem Soc; 2015 Apr; 137(14):4630-3. PubMed ID: 25837588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoelectrochemical behavior of nanostructured WO3 thin-film electrodes: The oxidation of formic acid.
    Monllor-Satoca D; Borja L; Rodes A; Gómez R; Salvador P
    Chemphyschem; 2006 Dec; 7(12):2540-51. PubMed ID: 17072939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 14.7% Efficiency Organic Photovoltaic Cells Enabled by Active Materials with a Large Electrostatic Potential Difference.
    Yao H; Cui Y; Qian D; Ponseca CS; Honarfar A; Xu Y; Xin J; Chen Z; Hong L; Gao B; Yu R; Zu Y; Ma W; Chabera P; Pullerits T; Yartsev A; Gao F; Hou J
    J Am Chem Soc; 2019 May; 141(19):7743-7750. PubMed ID: 31017418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.