These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 21274970)
1. Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. Hu X; Wong KK; Young GS; Guo L; Wong ST J Magn Reson Imaging; 2011 Feb; 33(2):296-305. PubMed ID: 21274970 [TBL] [Abstract][Full Text] [Related]
2. Recurrent glioblastoma multiforme versus radiation injury: a multiparametric 3-T MR approach. Di Costanzo A; Scarabino T; Trojsi F; Popolizio T; Bonavita S; de Cristofaro M; Conforti R; Cristofano A; Colonnese C; Salvolini U; Tedeschi G Radiol Med; 2014 Aug; 119(8):616-24. PubMed ID: 24408041 [TBL] [Abstract][Full Text] [Related]
3. Distinguishing Tumor Recurrence From Radiation Necrosis in Treated Glioblastoma Using Multiparametric MRI. Feng A; Yuan P; Huang T; Li L; Lyu J Acad Radiol; 2022 Sep; 29(9):1320-1331. PubMed ID: 34896001 [TBL] [Abstract][Full Text] [Related]
4. Multiparametric MRI for Differentiation of Radiation Necrosis From Recurrent Tumor in Patients With Treated Glioblastoma. Nael K; Bauer AH; Hormigo A; Lemole M; Germano IM; Puig J; Stea B AJR Am J Roentgenol; 2018 Jan; 210(1):18-23. PubMed ID: 28952810 [TBL] [Abstract][Full Text] [Related]
5. Prediction of pseudoprogression in patients with glioblastomas using the initial and final area under the curves ratio derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. Suh CH; Kim HS; Choi YJ; Kim N; Kim SJ AJNR Am J Neuroradiol; 2013 Dec; 34(12):2278-86. PubMed ID: 23828115 [TBL] [Abstract][Full Text] [Related]
6. Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation. Park YW; Choi D; Park JE; Ahn SS; Kim H; Chang JH; Kim SH; Kim HS; Lee SK Sci Rep; 2021 Feb; 11(1):2913. PubMed ID: 33536499 [TBL] [Abstract][Full Text] [Related]
7. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Barajas RF; Chang JS; Segal MR; Parsa AT; McDermott MW; Berger MS; Cha S Radiology; 2009 Nov; 253(2):486-96. PubMed ID: 19789240 [TBL] [Abstract][Full Text] [Related]
8. Differentiation of Recurrent Glioblastoma from Delayed Radiation Necrosis by Using Voxel-based Multiparametric Analysis of MR Imaging Data. Yoon RG; Kim HS; Koh MJ; Shim WH; Jung SC; Kim SJ; Kim JH Radiology; 2017 Oct; 285(1):206-213. PubMed ID: 28535120 [TBL] [Abstract][Full Text] [Related]
9. [Differentiation between glioma recurrence and radiation-induced brain injuries using perfusion-weighted magnetic resonance imaging]. Wang YL; Liu MY; Wang Y; Xiao HF; Sun L; Zhang J; Ma L Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2013 Aug; 35(4):416-21. PubMed ID: 23987489 [TBL] [Abstract][Full Text] [Related]
10. Multiparametric magnetic resonance imaging to differentiate high-grade gliomas and brain metastases. Mouthuy N; Cosnard G; Abarca-Quinones J; Michoux N J Neuroradiol; 2012 Dec; 39(5):301-7. PubMed ID: 22197404 [TBL] [Abstract][Full Text] [Related]
11. Multilevel analysis of spatiotemporal association features for differentiation of tumor enhancement patterns in breast DCE-MRI. Lee SH; Kim JH; Cho N; Park JS; Yang Z; Jung YS; Moon WK Med Phys; 2010 Aug; 37(8):3940-56. PubMed ID: 20879557 [TBL] [Abstract][Full Text] [Related]
12. Computer-Extracted Texture Features to Distinguish Cerebral Radionecrosis from Recurrent Brain Tumors on Multiparametric MRI: A Feasibility Study. Tiwari P; Prasanna P; Wolansky L; Pinho M; Cohen M; Nayate AP; Gupta A; Singh G; Hatanpaa KJ; Sloan A; Rogers L; Madabhushi A AJNR Am J Neuroradiol; 2016 Dec; 37(12):2231-2236. PubMed ID: 27633806 [TBL] [Abstract][Full Text] [Related]
13. Posttreatment recurrence of malignant brain neoplasm: accuracy of relative cerebral blood volume fraction in discriminating low from high malignant histologic volume fraction. Gasparetto EL; Pawlak MA; Patel SH; Huse J; Woo JH; Krejza J; Rosenfeld MR; O'Rourke DM; Lustig R; Melhem ER; Wolf RL Radiology; 2009 Mar; 250(3):887-96. PubMed ID: 19244052 [TBL] [Abstract][Full Text] [Related]
14. Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma. Nakagawa M; Nakaura T; Namimoto T; Kitajima M; Uetani H; Tateishi M; Oda S; Utsunomiya D; Makino K; Nakamura H; Mukasa A; Hirai T; Yamashita Y Eur J Radiol; 2018 Nov; 108():147-154. PubMed ID: 30396648 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the layering pattern of the apparent diffusion coefficient (ADC) for differentiation of radiation necrosis from tumour progression. Cha J; Kim ST; Kim HJ; Kim HJ; Kim BJ; Jeon P; Kim KH; Byun HS Eur Radiol; 2013 Mar; 23(3):879-86. PubMed ID: 22903642 [TBL] [Abstract][Full Text] [Related]
16. Multi-parametric (ADC/PWI/T2-w) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. Fathi Kazerooni A; Mohseni M; Rezaei S; Bakhshandehpour G; Saligheh Rad H MAGMA; 2015 Feb; 28(1):13-22. PubMed ID: 24691860 [TBL] [Abstract][Full Text] [Related]
17. Combination of IVIM-DWI and 3D-ASL for differentiating true progression from pseudoprogression of Glioblastoma multiforme after concurrent chemoradiotherapy: study protocol of a prospective diagnostic trial. Liu ZC; Yan LF; Hu YC; Sun YZ; Tian Q; Nan HY; Yu Y; Sun Q; Wang W; Cui GB BMC Med Imaging; 2017 Feb; 17(1):10. PubMed ID: 28143434 [TBL] [Abstract][Full Text] [Related]
18. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier. Chan I; Wells W; Mulkern RV; Haker S; Zhang J; Zou KH; Maier SE; Tempany CM Med Phys; 2003 Sep; 30(9):2390-8. PubMed ID: 14528961 [TBL] [Abstract][Full Text] [Related]
19. Differentiation of tumor progression from pseudoprogression in patients with posttreatment glioblastoma using multiparametric histogram analysis. Cha J; Kim ST; Kim HJ; Kim BJ; Kim YK; Lee JY; Jeon P; Kim KH; Kong DS; Nam DH AJNR Am J Neuroradiol; 2014 Jul; 35(7):1309-17. PubMed ID: 24676005 [TBL] [Abstract][Full Text] [Related]
20. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Kim JY; Park JE; Jo Y; Shim WH; Nam SJ; Kim JH; Yoo RE; Choi SH; Kim HS Neuro Oncol; 2019 Feb; 21(3):404-414. PubMed ID: 30107606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]