These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images. Juntu J; Sijbers J; De Backer S; Rajan J; Van Dyck D J Magn Reson Imaging; 2010 Mar; 31(3):680-9. PubMed ID: 20187212 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Yang D; Rao G; Martinez J; Veeraraghavan A; Rao A Med Phys; 2015 Nov; 42(11):6725-35. PubMed ID: 26520762 [TBL] [Abstract][Full Text] [Related]
24. Survival analysis in patients with newly diagnosed primary glioblastoma multiforme using pre- and post-treatment peritumoral perfusion imaging parameters. Bag AK; Cezayirli PC; Davenport JJ; Gaddikeri S; Fathallah-Shaykh HM; Cantor A; Han XS; Nabors LB J Neurooncol; 2014 Nov; 120(2):361-70. PubMed ID: 25098699 [TBL] [Abstract][Full Text] [Related]
25. Nonlinear registration of diffusion-weighted images improves clinical sensitivity of functional diffusion maps in recurrent glioblastoma treated with bevacizumab. Ellingson BM; Cloughesy TF; Lai A; Nghiemphu PL; Pope WB Magn Reson Med; 2012 Jan; 67(1):237-45. PubMed ID: 21702063 [TBL] [Abstract][Full Text] [Related]
26. Multiparametric imaging-based differentiation of lymphoma and glioblastoma: using T1-perfusion, diffusion, and susceptibility-weighted MRI. Saini J; Kumar Gupta P; Awasthi A; Pandey CM; Singh A; Patir R; Ahlawat S; Sadashiva N; Mahadevan A; Kumar Gupta R Clin Radiol; 2018 Nov; 73(11):986.e7-986.e15. PubMed ID: 30197047 [TBL] [Abstract][Full Text] [Related]
27. The Diagnostic Ability of Follow-Up Imaging Biomarkers after Treatment of Glioblastoma in the Temozolomide Era: Implications from Proton MR Spectroscopy and Apparent Diffusion Coefficient Mapping. Bulik M; Kazda T; Slampa P; Jancalek R Biomed Res Int; 2015; 2015():641023. PubMed ID: 26448943 [TBL] [Abstract][Full Text] [Related]
28. Spatial Habitat Features Derived from Multiparametric Magnetic Resonance Imaging Data Are Associated with Molecular Subtype and 12-Month Survival Status in Glioblastoma Multiforme. Lee J; Narang S; Martinez J; Rao G; Rao A PLoS One; 2015; 10(9):e0136557. PubMed ID: 26368923 [TBL] [Abstract][Full Text] [Related]
29. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading. Vamvakas A; Williams SC; Theodorou K; Kapsalaki E; Fountas K; Kappas C; Vassiou K; Tsougos I Phys Med; 2019 Apr; 60():188-198. PubMed ID: 30910431 [TBL] [Abstract][Full Text] [Related]
30. Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI. Larroza A; Moratal D; Paredes-Sánchez A; Soria-Olivas E; Chust ML; Arribas LA; Arana E J Magn Reson Imaging; 2015 Nov; 42(5):1362-8. PubMed ID: 25865833 [TBL] [Abstract][Full Text] [Related]
31. Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival. Hu LS; Eschbacher JM; Heiserman JE; Dueck AC; Shapiro WR; Liu S; Karis JP; Smith KA; Coons SW; Nakaji P; Spetzler RF; Feuerstein BG; Debbins J; Baxter LC Neuro Oncol; 2012 Jul; 14(7):919-30. PubMed ID: 22561797 [TBL] [Abstract][Full Text] [Related]
32. Differentiation of Pseudoprogression from True Progressionin Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy Combinedwith Radiomics Features from T Sun YZ; Yan LF; Han Y; Nan HY; Xiao G; Tian Q; Pu WH; Li ZY; Wei XC; Wang W; Cui GB BMC Med Imaging; 2021 Feb; 21(1):17. PubMed ID: 33535988 [TBL] [Abstract][Full Text] [Related]
33. Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors. Rodriguez Gutierrez D; Awwad A; Meijer L; Manita M; Jaspan T; Dineen RA; Grundy RG; Auer DP AJNR Am J Neuroradiol; 2014 May; 35(5):1009-15. PubMed ID: 24309122 [TBL] [Abstract][Full Text] [Related]
34. Glioma recurrence versus radiation necrosis? A pilot comparison of arterial spin-labeled, dynamic susceptibility contrast enhanced MRI, and FDG-PET imaging. Ozsunar Y; Mullins ME; Kwong K; Hochberg FH; Ament C; Schaefer PW; Gonzalez RG; Lev MH Acad Radiol; 2010 Mar; 17(3):282-90. PubMed ID: 20060750 [TBL] [Abstract][Full Text] [Related]
35. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients. Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693 [TBL] [Abstract][Full Text] [Related]
36. Contrast-Enhanced Perfusion MR Imaging to Differentiate Between Recurrent/Residual Brain Neoplasms and Radiation Necrosis. Metaweh NAK; Azab AO; El Basmy AAH; Mashhour KN; El Mahdy WM Asian Pac J Cancer Prev; 2018 Apr; 19(4):941-948. PubMed ID: 29693348 [TBL] [Abstract][Full Text] [Related]
37. Combined analysis of MGMT methylation and dynamic-susceptibility-contrast MRI for the distinction between early and pseudo-progression in glioblastoma patients. Bani-Sadr A; Berner LP; Barritault M; Chamard L; Bidet CM; Eker OF; Hermier M; Guyotat J; Jouanneau E; Meyronet D; Gouttard S; D'Hombres A; Iziquierdo C; Honnorat J; Berthezène Y; Ducray F Rev Neurol (Paris); 2019 Oct; 175(9):534-543. PubMed ID: 31208813 [TBL] [Abstract][Full Text] [Related]
38. Dynamic susceptibility contrast-enhanced perfusion magnetic resonance (MR) imaging combined with contrast-enhanced MR imaging in the follow-up of immunogene-treated glioblastoma multiforme. Stenberg L; Englund E; Wirestam R; Siesjö P; Salford LG; Larsson EM Acta Radiol; 2006 Oct; 47(8):852-61. PubMed ID: 17050367 [TBL] [Abstract][Full Text] [Related]
39. Comparison of three different MR perfusion techniques and MR spectroscopy for multiparametric assessment in distinguishing recurrent high-grade gliomas from stable disease. Seeger A; Braun C; Skardelly M; Paulsen F; Schittenhelm J; Ernemann U; Bisdas S Acad Radiol; 2013 Dec; 20(12):1557-65. PubMed ID: 24200483 [TBL] [Abstract][Full Text] [Related]
40. Uninterpretable Dynamic Susceptibility Contrast-Enhanced Perfusion MR Images in Patients with Post-Treatment Glioblastomas: Cross-Validation of Alternative Imaging Options. Heo YJ; Kim HS; Park JE; Choi CG; Kim SJ PLoS One; 2015; 10(8):e0136380. PubMed ID: 26296086 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]