These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 21275034)
1. Davydov splitting of excitons in cyclic bacteriochlorophyll a nanoaggregates of bacterial light-harvesting complexes between 4.5 and 263 K. Pajusalu M; Rätsep M; Trinkunas G; Freiberg A Chemphyschem; 2011 Feb; 12(3):634-44. PubMed ID: 21275034 [TBL] [Abstract][Full Text] [Related]
2. Exciton band structure in bacterial peripheral light-harvesting complexes. Trinkunas G; Zerlauskiene O; Urbonienė V; Chmeliov J; Gall A; Robert B; Valkunas L J Phys Chem B; 2012 May; 116(17):5192-8. PubMed ID: 22480241 [TBL] [Abstract][Full Text] [Related]
3. [A comparative study of the fluorescence properties of the chlorosomal antenna of the green bacterium from the family Oscillochloridaceae and the members from two other families of green bacteria]. Taisova AS; Lukashev EP; Keppen OI; Fetisova ZG Biofizika; 2005; 50(2):271-6. PubMed ID: 15856984 [TBL] [Abstract][Full Text] [Related]
4. Ultrafast exciton-exciton coherent transfer in molecular aggregates and its application to light-harvesting systems. Hyeon-Deuk K; Tanimura Y; Cho M J Chem Phys; 2007 Aug; 127(7):075101. PubMed ID: 17718632 [TBL] [Abstract][Full Text] [Related]
5. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Hildner R; Brinks D; Nieder JB; Cogdell RJ; van Hulst NF Science; 2013 Jun; 340(6139):1448-51. PubMed ID: 23788794 [TBL] [Abstract][Full Text] [Related]
6. Static and dynamic protein impact on electronic properties of light-harvesting complex LH2. Zerlauskiene O; Trinkunas G; Gall A; Robert B; Urboniene V; Valkunas L J Phys Chem B; 2008 Dec; 112(49):15883-92. PubMed ID: 19367872 [TBL] [Abstract][Full Text] [Related]
7. Ab inito study on triplet excitation energy transfer in photosynthetic light-harvesting complexes. You ZQ; Hsu CP J Phys Chem A; 2011 Apr; 115(16):4092-100. PubMed ID: 21410281 [TBL] [Abstract][Full Text] [Related]
8. Rotational deviation of 3-acetyl group from cyclic tetrapyrrole pi-plane in synthetic bacteriochlorophyll-a analogs by 20-substitution. Tamiaki H; Kotegawa Y; Mizutani K Bioorg Med Chem Lett; 2008 Dec; 18(23):6037-40. PubMed ID: 18938078 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence-excitation and emission spectra from LH2 antenna complexes of Rhodopseudomonas acidophila as a function of the sample preparation conditions. Kunz R; Timpmann K; Southall J; Cogdell RJ; Köhler J; Freiberg A J Phys Chem B; 2013 Oct; 117(40):12020-9. PubMed ID: 24033126 [TBL] [Abstract][Full Text] [Related]
10. Selective chemical shift assignment of bacteriochlorophyll a in uniformly [13C-15N]-labeled light-harvesting 1 complexes by solid-state NMR in ultrahigh magnetic field. Pandit A; Buda F; van Gammeren AJ; Ganapathy S; de Groot HJ J Phys Chem B; 2010 May; 114(18):6207-15. PubMed ID: 20408539 [TBL] [Abstract][Full Text] [Related]
11. Band structure and local dynamics of excitons in bacterial light-harvesting complexes revealed by spectrally selective spectroscopy. Rätsep M; Hunter CN; Olsen JD; Freiberg A Photosynth Res; 2005 Nov; 86(1-2):37-48. PubMed ID: 16172924 [TBL] [Abstract][Full Text] [Related]
12. Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. Aratani N; Kim D; Osuka A Acc Chem Res; 2009 Dec; 42(12):1922-34. PubMed ID: 19842697 [TBL] [Abstract][Full Text] [Related]
13. The role of betaArg-10 in the B800 bacteriochlorophyll and carotenoid pigment environment within the light-harvesting LH2 complex of Rhodobacter sphaeroides. Fowler GJ; Hess S; Pullerits T; Sundström V; Hunter CN Biochemistry; 1997 Sep; 36(37):11282-91. PubMed ID: 9287171 [TBL] [Abstract][Full Text] [Related]
14. Solvation effect of bacteriochlorophyll excitons in light-harvesting complex LH2. Urboniene V; Vrublevskaja O; Trinkunas G; Gall A; Robert B; Valkunas L Biophys J; 2007 Sep; 93(6):2188-98. PubMed ID: 17513366 [TBL] [Abstract][Full Text] [Related]
15. Subtle spectral effects accompanying the assembly of bacteriochlorophylls into cyclic light harvesting complexes revealed by high-resolution fluorescence spectroscopy. Rätsep M; Pajusalu M; Linnanto JM; Freiberg A J Chem Phys; 2014 Oct; 141(15):155102. PubMed ID: 25338912 [TBL] [Abstract][Full Text] [Related]
16. Computational Modeling of Exciton-Bath Hamiltonians for Light Harvesting 2 and Light Harvesting 3 Complexes of Purple Photosynthetic Bacteria at Room Temperature. Montemayor D; Rivera E; Jang SJ J Phys Chem B; 2018 Apr; 122(14):3815-3825. PubMed ID: 29533664 [TBL] [Abstract][Full Text] [Related]
17. The spectral signatures of Frenkel polarons in H- and J-aggregates. Spano FC Acc Chem Res; 2010 Mar; 43(3):429-39. PubMed ID: 20014774 [TBL] [Abstract][Full Text] [Related]
18. Stability of integral membrane proteins under high hydrostatic pressure: the LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria. Kangur L; Timpmann K; Freiberg A J Phys Chem B; 2008 Jul; 112(26):7948-55. PubMed ID: 18537288 [TBL] [Abstract][Full Text] [Related]
19. Excitons in the LH3 complexes from purple bacteria. Chmeliov J; Songaila E; Rancova O; Gall A; Robert B; Abramavicius D; Valkunas L J Phys Chem B; 2013 Sep; 117(38):11058-68. PubMed ID: 23570515 [TBL] [Abstract][Full Text] [Related]
20. [Two-photon excitation fluorescence spectrum of the light-harvesting complex LH2 from Chromatium minutissimum within 650-745 nm range is determined by two-photon absorption of bacteriochlorophyll rather than of carotenoids]. Krikunova MA; Leupold D; Rini M; Voigt B; Moskalenko AA; Toropygina OA; Razzhivin AP Biofizika; 2002; 47(6):1015-20. PubMed ID: 12500564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]