These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 21275253)
1. Leaching properties of Mn-slag from the pyrometallurgical recycling of alkaline batteries: standardized leaching tests and influence of operational parameters. Pareuil P; Bordas F; Joussein E; Bollinger JC Environ Technol; 2010 Dec; 31(14):1565-76. PubMed ID: 21275253 [TBL] [Abstract][Full Text] [Related]
2. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios. Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920 [TBL] [Abstract][Full Text] [Related]
3. Alteration of a Mn-rich slag in contact with soil: in-situ experiment during one year. Pareuil P; Bordas F; Joussein E; Bollinger JC Environ Pollut; 2010 May; 158(5):1311-8. PubMed ID: 20171770 [TBL] [Abstract][Full Text] [Related]
4. The influence of reducing conditions on the dissolution of a Mn-rich slag from pyrometallurgical recycling of alkaline batteries. Pareuil P; Hamdoun H; Bordas F; Joussein E; Bollinger JC J Environ Manage; 2011 Jan; 92(1):102-11. PubMed ID: 20833467 [TBL] [Abstract][Full Text] [Related]
5. Kinetics of steel slag leaching: Batch tests and modeling. De Windt L; Chaurand P; Rose J Waste Manag; 2011 Feb; 31(2):225-35. PubMed ID: 20646922 [TBL] [Abstract][Full Text] [Related]
6. Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes. Buzatu T; Popescu G; Birloaga I; Săceanu S Waste Manag; 2013 Mar; 33(3):699-705. PubMed ID: 23158875 [TBL] [Abstract][Full Text] [Related]
7. Study on the preparation of Mn-Zn soft magnetic ferrite powders from waste Zn-Mn dry batteries. Peng CH; Bai BS; Chen YF Waste Manag; 2008; 28(2):326-32. PubMed ID: 17561387 [TBL] [Abstract][Full Text] [Related]
8. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. van Zomeren A; van der Laan SR; Kobesen HB; Huijgen WJ; Comans RN Waste Manag; 2011 Nov; 31(11):2236-44. PubMed ID: 21741816 [TBL] [Abstract][Full Text] [Related]
9. Leaching modelling of slurry-phase carbonated steel slag. Costa G; Polettini A; Pomi R; Stramazzo A J Hazard Mater; 2016 Jan; 302():415-425. PubMed ID: 26489916 [TBL] [Abstract][Full Text] [Related]
10. Hydration of dicalcium silicate and diffusion through neo-formed calcium-silicate-hydrates at weathered surfaces control the long-term leaching behaviour of basic oxygen furnace (BOF) steelmaking slag. Stewart DI; Bray AW; Udoma G; Hobson AJ; Mayes WM; Rogerson M; Burke IT Environ Sci Pollut Res Int; 2018 Apr; 25(10):9861-9872. PubMed ID: 29372528 [TBL] [Abstract][Full Text] [Related]
11. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications. Jarošíková A; Ettler V; Mihaljevič M; Kříbek B; Mapani B J Environ Manage; 2017 Feb; 187():178-186. PubMed ID: 27889660 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of environmental compatibility of EAFD using different leaching standards. Sebag MG; Korzenowski C; Bernardes AM; Vilela AC J Hazard Mater; 2009 Jul; 166(2-3):670-5. PubMed ID: 19223119 [TBL] [Abstract][Full Text] [Related]
13. Reproducing ten years of road ageing--accelerated carbonation and leaching of EAF steel slag. Suer P; Lindqvist JE; Arm M; Frogner-Kockum P Sci Total Environ; 2009 Sep; 407(18):5110-8. PubMed ID: 19539979 [TBL] [Abstract][Full Text] [Related]
14. Release dynamic process identification for a cement based material in various leaching conditions. Part II. Modelling the release dynamics for different leaching conditions. Tiruta-Barna L; Rethy Z; Barna R J Environ Manage; 2005 Jan; 74(2):127-39. PubMed ID: 15627466 [TBL] [Abstract][Full Text] [Related]
15. Vitrification for reclaiming spent alkaline batteries. Kuo YM; Chang JE; Jin CH; Lin JY; Chang-Chien GP Waste Manag; 2009 Jul; 29(7):2132-9. PubMed ID: 19246187 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of the recycling of waste Ni-Cd and Ni-MH batteries by mechanical treatment. Huang K; Li J; Xu Z Waste Manag; 2011 Jun; 31(6):1292-9. PubMed ID: 21295459 [TBL] [Abstract][Full Text] [Related]
17. Recovery of metal values from copper slag and reuse of residual secondary slag. Sarfo P; Das A; Wyss G; Young C Waste Manag; 2017 Dec; 70():272-281. PubMed ID: 28988605 [TBL] [Abstract][Full Text] [Related]
18. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process. Nogueira CA; Margarido F Environ Technol; 2012; 33(1-3):359-66. PubMed ID: 22519122 [TBL] [Abstract][Full Text] [Related]
19. Leaching of APC residues from secondary Pb metallurgy using single extraction tests: the mineralogical and the geochemical approach. Ettler V; Mihaljevic M; Sebek O; Strnad L J Hazard Mater; 2005 May; 121(1-3):149-57. PubMed ID: 15885416 [TBL] [Abstract][Full Text] [Related]
20. The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues. Quina MJ; Bordado JC; Quinta-Ferreira RM Waste Manag; 2009 Sep; 29(9):2483-93. PubMed ID: 19545989 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]